如图所示,两根足够长的平行光滑金属导轨MN、PQ间距为d,其电阻不计,两导轨所在的平面与水平面成θ角。质量分别为m和3m,电阻均为R的两金属棒ab、cd分别垂直导轨放置,每棒两

◎ 题目

如图所示,两根足够长的平行光滑金属导轨MN、PQ间距为d,其电阻不计,两导轨所在的平面与水平面成θ角。质量分别为m和3m,电阻均为R的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,两棒之间用一绝缘的细线相连,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B,给棒ab施加一平行于导轨向上的拉力作用,使两棒均保持静止。若在t=0时刻将细线烧断,此后保持拉力不变,重力加速度为g。
(1)细线烧断后,当ab棒加速度为a1时,求cd棒的加速度大小a2 (用a1表示);
(2)求ab棒最终所能达到的最大速度。

◎ 答案

解:(1)烧断细线前拉力设为 ,则
烧断细线后,对ab棒,设此时ab棒所受安培力的大小为,由牛顿第二定律得:

同时,设cd棒此时所受安培力的大小为,由牛顿第二定律得:
由以上各式解得:
(2)当ab棒和cd棒加速度为零时,速度均达最大, 设此时ab棒和cd棒的速度大小分别
由cd棒受力平衡:
此时回路中总的电动势:
电路中电流:
由动量守恒定律:
由以上各式解得:

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,两根足够长的平行光滑金属导轨MN、PQ间距为d,其电阻不计,两导轨所在的平面与水平面成θ角。质量分别为m和3m,电阻均为R的两金属棒ab、cd分别垂直导轨放置,每棒两…”主要考查了你对  【牛顿运动定律的应用】,【动量守恒定律的应用】,【导体切割磁感线时的感应电动势】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐