如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路

◎ 题目

如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动中始终不接触,求:
(1)在运动中产生的焦耳热最多是多少?
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?
魔方格

◎ 答案

(1)从开始到两棒达到相同速度v的过程中,两棒的总动量守恒,有 mv0=2mv,v=
1
2
v0

根据能量守恒定律,整个过程中产生的焦耳热 Q=
1
2
m
v20
-
1
2
(2m)v2=
1
4
m
v20

在运动中产生的焦耳热最多是
1
4
m
v20

(2)设ab棒的速度变为
3
4
v 0
时,cd棒的速度为v',则由动量守恒可知mv0=m
3
4
v0+mv′
解得v′=
1
4
v 0

此时回路中的电动势为 E=
3
4
BLv0-
1
4
BLv0=
1
2
BLv0

此时回路中的电流为 I=
E
2R
=
BLv0
4R

此时cd棒所受的安培力为 F=BIL=
B2L2v0
4R

由牛顿第二定律可得,cd棒的加速度a=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
法拉第曾提出一种利用河流发电的设想,并进行了实验研究,实验装置的示意图可用图表示,两块面积均为S的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d。水流速度处
法拉第曾提出一种利用河流发
如图所示,足够长的光滑U形导体框架的宽度L=0.5m,电阻忽略不计,其所在平面与水平面成θ=37°角,磁感应强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量m=0.2kg,有效
如图所示,足够长的光滑U形导
如图所示,两竖直放置的平行光滑导轨处于垂直于导轨平面的匀强磁场中,金属杆ab可沿导轨滑动,原先S断开,让ab杆由静止下滑,一段时间后闭合S,则从S闭合开始计时,ab杆的运
如图所示,两竖直放置的平行
如图所示,MN和PQ为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置金属棒ab与导轨接触良好.N、Q端接理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分
如图所示,MN和PQ为处于同一
如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置.保持导轨之间接触良好,金属
如图,在匀强磁场中固定放置