如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁

◎ 题目

如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
魔方格

◎ 答案


魔方格

(1)棒产生的感应电动势E1=BLv0
通过R的电流大小I1=
E1
R+r
=
BLv0
R+r

根据右手定则判断得知:电流方向为b→a            
(2)棒产生的感应电动势为E2=BLv
感应电流I2=
E2
R+r
=
BLv
R+r

棒受到的安培力大小F=BIL=
B2L2v
R+r
,方向沿斜面向上,如图所示.
根据牛顿第二定律 有 mgsinθ-F=ma
解得 a=gsinθ-
B2L2v
m(R+r)

(3)导体棒最终静止,有 mgsinθ=kx
弹簧的压缩量x=
mgsinθ
k

设整个过程回路产生的焦耳热为Q0,根据能量守恒定律 有
  
1
2
m
v20
+mgxsinθ=EP+Q0

解得 Q0=
1
2
m
v20
+
(mgsinθ)2
k
-EP

电阻R上产生的焦耳热Q=
R
R+r
Q0=
R
R+r
[
1
2
m
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
法拉第曾提出一种利用河流发电的设想,并进行了实验研究,实验装置的示意图可用图表示,两块面积均为S的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d。水流速度处
法拉第曾提出一种利用河流发
如图所示,足够长的光滑U形导体框架的宽度L=0.5m,电阻忽略不计,其所在平面与水平面成θ=37°角,磁感应强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量m=0.2kg,有效
如图所示,足够长的光滑U形导
如图所示,两竖直放置的平行光滑导轨处于垂直于导轨平面的匀强磁场中,金属杆ab可沿导轨滑动,原先S断开,让ab杆由静止下滑,一段时间后闭合S,则从S闭合开始计时,ab杆的运
如图所示,两竖直放置的平行
如图所示,MN和PQ为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置金属棒ab与导轨接触良好.N、Q端接理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分
如图所示,MN和PQ为处于同一
如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置.保持导轨之间接触良好,金属
如图,在匀强磁场中固定放置