如图甲所示,两根足够长的光滑平行金属导轨相距为L=0.40m,导轨平面与水平面成θ=30?角,上端和下端通过导线分别连接阻值R1=R2=1.2Ω的电阻,质量为m=0.20kg、阻值为r=0.2

◎ 题目

如图甲所示,两根足够长的光滑平行金属导轨相距为L=0.40m,导轨平面与水平面成θ=30?角,上端和下端通过导线分别连接阻值R1=R2=1.2Ω的电阻,质量为m=0.20kg、阻值为r=0.20Ω的金属棒ab放在两导轨上,棒与导轨垂直且保持良好接触,整个装置处在垂直导轨平面向上的磁场中,取重力加速度g=10m/s2.若所加磁场的磁感应强度大小恒为B,通过小电动机对金属棒施加力,使金属棒沿导轨向上做匀加速直线运动,经过0.5s电动机的输出功率达到10W,此后保持电动机的输出功率不变,金属棒运动的v-t图如图乙所示,试求:
(1)磁感应强度B的大小;
(2)在0-0.5s时间内金属棒的加速度a的大小;
(3)在0-0.5s时间内电动机牵引力F与时间t的关系;
(4)如果在0-0.5s时间内电阻R1产生的热量为0.135J,则这段时间内电动机做的功.

魔方格

◎ 答案

(1)由图象可知,当金属棒的最大速度为vm=5m/s,因为此时电动机的功率恒为P=10W,根据P=Fv可得此时电动机对金属棒的拉力F=
P
vm
  ①
对金属棒进行受力分析可得:

魔方格

由图可知:F合x=F-F-mgsin30°=0
故此时F=F-mgsinθ        ②
又因为回路中产生的感应电动势E=BLvm ③
根据欧姆定律可得,此时回路中电流I=
BLvm
r+
R
2
           ④
由①②③④可解得B=1T
(2)由题意可知,当t=0.5s时,金属棒获得的速度v=at
此时电路中产生的感应电流I=
BLv
r+
1
2
R
,金属棒受到的安培力=F=
B2L2v
r+
1
2
R

此时电动机的拉力F=
P
v

则对金属棒进行受力分析有:F-F-mgsinθ=ma
代入有关数据有:
P
at
-
B2L2at
r+
1
2
R
-mgsinθ=ma

又因为t=0.5s,m=0.2kg,R=1.2Ω,r=0.20Ω,θ=30°
所以可计算得a=
20
3
m/s2

(3)在0-0.5s时间里对金属棒进行受力分析有:
  F-F-mgsinθ=ma得
F=ma+mgsin30°+F
代入a=
20
3
m/s2
F=
 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
B2L2v
r+
1
2
R
法拉第曾提出一种利用河流发电的设想,并进行了实验研究,实验装置的示意图可用图表示,两块面积均为S的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d。水流速度处
法拉第曾提出一种利用河流发
如图所示,足够长的光滑U形导体框架的宽度L=0.5m,电阻忽略不计,其所在平面与水平面成θ=37°角,磁感应强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量m=0.2kg,有效
如图所示,足够长的光滑U形导
如图所示,两竖直放置的平行光滑导轨处于垂直于导轨平面的匀强磁场中,金属杆ab可沿导轨滑动,原先S断开,让ab杆由静止下滑,一段时间后闭合S,则从S闭合开始计时,ab杆的运
如图所示,两竖直放置的平行
如图所示,MN和PQ为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置金属棒ab与导轨接触良好.N、Q端接理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分
如图所示,MN和PQ为处于同一
如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置.保持导轨之间接触良好,金属
如图,在匀强磁场中固定放置