在竖直面内有两平行金属导轨AB、CD,间距为L,金属棒ab可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.它们的电阻均可不计.导轨之间有垂直纸面向外的匀强磁场,磁感强度为

◎ 题目

在竖直面内有两平行金属导轨AB、CD,间距为L,金属棒ab可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.它们的电阻均可不计.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B.导轨右边与电路连接.电路中的三个定值电阻R1、R2、R3阻值分别为2R、R和0.5R.在BD间接有一水平放置的平行板电容器C,极板间距离为d.
(1)当ab以速度v0匀速向左运动时,电容器中质量为m的带电微粒恰好静止.试判断微粒的带电性质,及带电量的大小.
(2)当ab棒以某一速度沿导轨匀速运动时,发现带电微粒从两极板中间由静止开始向下运动,历时t=2×10-2 s到达下极板,已知电容器两极板间距离d=6×10-3m,求ab棒的速度大小和方向.(g=10m/s2
魔方格

◎ 答案

(1)棒匀速向左运动,感应电流为顺时针方向,电容器上板带正电,板间场强向下.
∵微粒受力平衡,电场力向上,场强方向向下.
∴微粒带负电.
设微粒带电量大小为q,由平衡条件知:mg=q
UC
d
…①
对R1、R2和金属棒构成的回路,由欧姆定律可得
   I=
E
3R
…②
   UC=IR2=IR…③
由法拉第电磁感应定律可得 E=BLv0…④
由以上各式求得 q=
3mgd
BLv0
…⑤
(2)因带电微粒从极板中间开始向下作初速度为零的匀加速运动,
由运动学公式得:
1
2
d
=
1
2
at2
…⑥
得  a=15m/s2=
3
2
g
>g…⑦
可见带电微粒受到的电场力向下,所以ab棒应向右运动,设此时极板间电压为UC′,由牛顿第二定律,得
   mg+q
UC
d
=m?
3
2
g
…⑧
出⑤和⑧得  UC′=
1
6
BLv0

设棒ab运动速度为vx,则电动势E′=Blvx,由欧姆定律得:
 UC′=I′R2=
BLvx
3R
?R
=
1
3
BLvx
=
1
6
nlv0

∴vx=
1
2
v0
.即棒运动速度大小应为原来速度的一半,即为
1
2
v0

答:
(1)微粒的带负电,带电量的大小为
3mgd
BLv1

(2)ab棒的速度大小为
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
法拉第曾提出一种利用河流发电的设想,并进行了实验研究,实验装置的示意图可用图表示,两块面积均为S的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d。水流速度处
法拉第曾提出一种利用河流发
如图所示,足够长的光滑U形导体框架的宽度L=0.5m,电阻忽略不计,其所在平面与水平面成θ=37°角,磁感应强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量m=0.2kg,有效
如图所示,足够长的光滑U形导
如图所示,两竖直放置的平行光滑导轨处于垂直于导轨平面的匀强磁场中,金属杆ab可沿导轨滑动,原先S断开,让ab杆由静止下滑,一段时间后闭合S,则从S闭合开始计时,ab杆的运
如图所示,两竖直放置的平行
如图所示,MN和PQ为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置金属棒ab与导轨接触良好.N、Q端接理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分
如图所示,MN和PQ为处于同一
如图,在匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c、d分别平行于oa、ob放置.保持导轨之间接触良好,金属
如图,在匀强磁场中固定放置