如图所示,足够长的粗糙斜面与水平面成θ=37°放置,在斜面上虚线aa′和bb′与斜面底边平行,且间距为d=0.1m,在aa′bb′围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B

◎ 题目

如图所示,足够长的粗糙斜面与水平面成θ=37°放置,在斜面上虚线aa′和bb′与斜面底边平行,且间距为d=0.1m,在aa′bb′围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B=1T;现有一质量为m=0.01kg,总电阻为R=1Ω,边长也为d=0.1m的正方形金属线圈MNPQ,其初始位置PQ边与aa′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,不计其他阻力,求:
(1)线圈向下返回到磁场区域时的速度;
(2)线圈向上离开磁场区域时的动能;
(3)线圈向下通过磁场过程中,线圈电阻R上产生的焦耳热.

◎ 答案

(1)线圈切割磁感线产生感应电动势:E=Bdv,
线圈电流:I=
E
R
=
Bdv
R

线圈受到的安培力:F=BId=
B2d2v
R

线圈向下进入磁场做匀速直线运动,
由平衡条件得:mgsinθ=μmgcosθ+F
解得:v=
(mgsinθ-μmgcosθ)R
B2d2
=2m/s

(2)线圈离开磁场到最高点,
由动能定理得:-mgxsinθ-μmgxcosθ=0-Ek1
线圈从最高点到进入磁场过程,
由动能定理得:mgxsinθ-μmgxcosθ=Ek
Ek=
1
2
mv2

解得:EK1=
m3g2R2(sin2θ-μ2cos2θ)
2B4d4
=0.1J;
(3)线圈向下匀速通过磁场过程,
由动能定理得:mg?2dsinθ-μmg?2dcosθ+W=0,
克服安培力做功转化为焦耳热,即:Q=-W
解得:Q=2mgd(sinθ-μcosθ)=0.004J.
答:(1)线圈向下返回到磁场区域时的速度为2m/s;
(2)线圈向上离开磁场区域时的动能为0.12J;
(3)线圈向下通过磁场过程中,线圈电阻R上产生的焦耳热为0.004J.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,足够长的粗糙斜面与水平面成θ=37°放置,在斜面上虚线aa′和bb′与斜面底边平行,且间距为d=0.1m,在aa′bb′围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B…”主要考查了你对  【导体切割磁感线时的感应电动势】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐