如图所示,电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,轨道所在平面的正方形区域如耐内存在着有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向

◎ 题目

如图所示,电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,轨道所在平面的正方形区域如耐内存在着有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向上.电阻相同、质量均为m的两根相同金属杆甲和乙放置在导轨上,甲金属杆恰好处在磁场的上边界处,甲、乙相距也为l.在静止释放两金属杆的同时,对甲施加一沿导轨平面且垂直甲金属杆的外力,使甲在沿导轨向下的运动过程中始终以加速度a=gsinθ做匀加速直线运动,金属杆乙剐进入磁场时即做匀速运动.
(1)求金属杆的电阻R;
(2)若从释放金属杆时开始计时,试写出甲金属杆在磁场中所受的外力F随时间t的变化关系式;
(3)若从开始释放两金属杆到金属杆乙刚离开磁场的过程中,金属杆乙中所产生的焦耳热为Q,求外力F在此过程中所做的功.

◎ 答案

(1)在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速
v2=2ax且 a=gsinθ
即 v=

2glsinθ

乙刚进入磁场时,对乙由根据平衡条件得mgsinθ=
B2l2v
2R

R=
B2l2

2glsinθ
2mgsinθ

(2)甲在磁场中运动时,由牛顿第二定律可知,外力F大小始终等于安培力火小即:F=
B2l2v
2R

v=(gsinθ)
解得 F=
mg2sin2θ

2glsinθ
t

方向沿导轨平面并垂直金属杆甲向下
(3)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为t1
l=
1
2
(gsinθ)
t21

t1=

2l
gsinθ
=
l
gsinθ

 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐