如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感

◎ 题目

如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆a b,测得最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图(乙)所示.已知轨距为L=2m,重力加速度g=l0m/s2,轨道足够长且电阻不计.

魔方格

(1)当R=0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;
(2)求金属杆的质量m和阻值r;
(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值Pm
(4)当R=4Ω时,求随着杆a b下滑回路瞬时电功率每增大1W的过程中合外力对杆做的功W.

◎ 答案

(1)由图可知,当R=0时,杆最终以v=2m/s匀速运动,产生电动势
   E=BLv=0.5×2×2V=2V                     
由右手定则判断可知杆中电流方向从b→a
(2)设杆运动的最大速度为v,杆切割磁感线产生的感应电动势 E=BLv
由闭合电路的欧姆定律得:I=
E
R+r

杆达到最大速度时满足 mgsinθ-BIL=0
联立解得:v=
mgsinθ
B2L2
R+
mgsinθ
B2L2
r

由图象可知:斜率为k=
4-2
2
m/(s?Ω)=1m/(s?Ω)
,纵截距为v0=2m/s,
得到:
mgsinθ
B2L2
r
=v0
mgsinθ
B2L2
=k
解得:m=0.2kg,r=2Ω    
(3)金属杆匀速下滑时电流恒定,则有  mgsinθ-BIL=0
I=
mgsinθ
BL
=1A

电阻箱消耗电功率的最大值Pm=I2Rm=4W
(4)由题意:E=BLv,P=
E2
R+r

得  P=
B2L2v2
R+r

瞬时电功率增大量△P=
B2L2
v22
R+r
-
B2L2
v21
R+r

由动能定理得
 W=
1
2
m
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路
如图所示,两根足够长的固定
如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有阻值为R的电阻,导轨电阻不计,斜面处于竖直向上的磁场中,金属棒ab受到沿斜面向上与金属棒垂直的
如图所示电路,两根光滑金属
如图所示,一足够长的光滑平行金属轨道,其轨道平面与水平面成θ角,上端用一电阻R相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m、电阻为r的金属杆ab,从高为h处由静止
如图所示,一足够长的光滑平
如图所示,光滑斜面的倾角θ=30°,在斜面上放置一矩形线框abcd,ab边的边长为1m,bc边的边长为0.8m,线框的质量M=4kg,电阻为0.1Ω,线框通过细线绕过光滑的定滑轮与重物相连
如图所示,光滑斜面的倾角θ
如图所示,光滑水平面上有正方形金属线框abcd,边长为L、电阻为R、质量为m.虚线PP’和QQ’之间有一竖直向上的匀强磁场,磁感应强度为B,宽度为H,且H>L.线框在恒力F0作用下由
如图所示,光滑水平面上有正