如图(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上.圆弧导轨所在区域无磁场,右段区域存在

◎ 题目

如图(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上.圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图(b)所示,两磁场方向均竖直向上.在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧底端.设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.
(1)问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?
(2)求0到时间t0内,回路中感应电流产生的焦耳热量.
(3)探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向.

魔方格

◎ 答案

(1)感应电流的大小和方向均不发生改变.因为金属棒滑到圆弧任意位置时,回路中磁通量的变化率相同.
(2)0-t0时间内,设回路中感应电动势大小为E0,感应电流为I,感应电流产生的焦耳热为Q,由法拉第电磁感应定律:E0=
△Φ
△t
=L2
B0
t0


根据闭合电路的欧姆定律:I=
E0
R
  由焦耳定律
有:Q=I2Rt0=
L4
B20
t0R

(3)设金属进入磁场B0一瞬间的速度为v,金属棒在圆弧区域下滑的过程中,机械能守恒:mgH=
1
2
mv2

在很短的时间△t内,根据法拉第电磁感应定律,金属棒进入磁场B0区域瞬间的感应电动势为E,则:
 E=
△Φ 
△t
,v=
△x
△t
△Φ=B0L△x+L2△B(t)         
由闭合电路欧姆定律得:I=
E
R

解得感应电流:I=
B0L(

2gH
-
L
t0
)
R

根据上式讨论:
I.当

2gH
=
L
t0
时,I=0;
II.当
 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长