如图所示,六段相互平行的金属导轨在同一水平面内,长度分别为L和2L,宽间距的导轨间相距均为2L、窄间距的导轨间相距均为L,最左端用导线连接阻值为R的电阻,各段导轨间均用

◎ 题目

如图所示,六段相互平行的金属导轨在同一水平面内,长度分别为L和2L,宽间距的导轨间相距均为2L、窄间距的导轨间相距均为L,最左端用导线连接阻值为R的电阻,各段导轨间均用导线连接,整个装置处于方向竖直向下、磁感应强度为B的匀强磁场中.质量为m的导体棒可在各段导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.导轨和导体棒电阻均忽略不计.现使导体棒从ab位置以初速度v0垂直于导轨向右运动,则

魔方格

(1)若导体棒在大小为F、沿初速度方向的恒定拉力作用下运动,到达cd位置时的速度为v,求在此运动的过程中电路产生的焦耳热.
(2)若导体棒在水平拉力作用下向右做匀速运动,求导体棒运动到cd位置的过程中,水平拉力做的功和电路中电流的有效值.
(3)若导体棒向右运动的过程中不受拉力作用,求运动到cd位置时的速度大小.

◎ 答案

(1)设产生的焦耳热为Q,由功能关系有9FL=Q+(
1
2
mv2-
1
2
m
v20
)

解得  Q=9FL+
1
2
m
v20
-
1
2
mv2

(2)导体棒在宽间距和窄间距轨道上运动时,电路中产生的感应电流分别为I1=
2BLv0
R
      I2=
BLv0
R

导体棒受到的拉力分别为F1=F=2BI1L    F2=BI2
拉力做功分别为  W1=3F1LW2=6F2L
则水平拉力做的功 W=W1+W2=
18B2L3v0
R

设电流的有效值为I,由功能关系有W=I2Rt
其中  t=
9L
v0

解得  I=

2
BLv0
R

(3)设导体棒在每段宽间距和窄间距轨道上运动速度变化的大小分别为△v1和△v2,在宽间距轨道上,根据牛顿第二定律,在t~t+△t时间内有△v=
F
m
△t

则  v1
2BL
m
I△t

而△q=I△tq1=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长