如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁

◎ 题目

如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
魔方格

◎ 答案


魔方格

(1)棒产生的感应电动势E1=BLv0
通过R的电流大小I1=
E1
R+r
=
BLv0
R+r

根据右手定则判断得知:电流方向为b→a            
(2)棒产生的感应电动势为E2=BLv
感应电流I2=
E2
R+r
=
BLv
R+r

棒受到的安培力大小F=BIL=
B2L2v
R+r
,方向沿斜面向上,如图所示.
根据牛顿第二定律 有 mgsinθ-F=ma
解得 a=gsinθ-
B2L2v
m(R+r)

(3)导体棒最终静止,有 mgsinθ=kx
弹簧的压缩量x=
mgsinθ
k

设整个过程回路产生的焦耳热为Q0,根据能量守恒定律 有
  
1
2
m
v20
+mgxsinθ=EP+Q0

解得 Q0=
1
2
m
v20
+
(mgsinθ)2
k
-EP

电阻R上产生的焦耳热Q=
R
R+r
Q0=
R
R+r
[
1
2
m
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长