如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的

◎ 题目

如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆a b,测得最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨距为L=2m,重力加速度g取l0m/s2,轨道足够长且电阻不计.

魔方格

(1)当R=0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;
(2)求金属杆的质量m和阻值r;
(3)当R=4Ω时,求回路瞬时电功率每增加1W的过程中合外力对杆做的功W.

◎ 答案

(1)由图可知,当R=0 时,杆最终以v=2m/s匀速运动,产生电动势 E=BLv=0.5×2×2V=2V 
由右手定则判断得知,杆中电流方向从b→a 
(2)设最大速度为v,杆切割磁感线产生的感应电动势 E=BLv
由闭合电路的欧姆定律:I=
E
R+r

杆达到最大速度时满足 mgsinθ-BIL=0
解得:v=
mgsinθ
B2L2
R+
mgsinθ
B2L2
r

由图象可知:斜率为k=
4-2
2
m/(s?Ω)=1m/(s?Ω)
,纵截距为v0=2m/s,
得到:
mgsinθ
B2L2
r
=v0
mgsinθ
B2L2
=k   
解得:m=0.2kg,r=2Ω     
(3)由题意:E=BLv,P=
E2
R+r

得  P=
B2L2v2
R+r
,则△P=
B2L2
v22
R+r
-
B2L2
v21
R+r

由动能定理得
W=
1
2
m
v22
-
1
2
m
v21

联立得 W=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长