如图所示,两根平行金属导轨固定在水平桌面上,每根导轨单位长度电阻为r0,导轨的端点O、O′用电阻可忽略的导线相连,两导轨间的距离为.导轨处于垂直纸面向里的非匀强磁场中,

◎ 题目

如图所示,两根平行金属导轨固定在水平桌面上,每根导轨单位长度电阻为r0,导轨的端点O、O′用电阻可忽略的导线相连,两导轨间的距离为.导轨处于垂直纸面向里的非匀强磁场中,磁场的磁感应强度B沿y方向大小不变,沿x方向均匀增强,即有B=kx,其中k为常数.一根质量为m、电阻不计的金属杆MN静止在坐标原点O、O′处.从t=0时刻,金属杆MN在拉力F作用下,以大小恒定为a的加速度在导轨上沿x方向无摩擦地滑动,滑动过程中杆保持与导轨垂直.求
(1)在时刻t金属杆MN产生的感应电动势大小;
(2)在时刻t金属杆MN所受的外力F;
(3)感应电动势的平均值与位移为x的函数关系;
(4)若在时刻t撤去拉力F,试说明金属杆MN此后做什么运动,并求此后电路发出的热量.
魔方格

◎ 答案

(1)在时刻t,有杆通过的位移大小为x=
1
2
at2

此时B=kx=
1
2
kat2,v=at
所以在t时刻金属杆MN产生的感应电动势大小为
   E=Blv=
1
2
kla2t3
(2)据题知,在时刻t,回路的总电阻R=2xr0=ar0t2
所以在t时刻流经回路的感应电流大小为
   I=
E
R
=
klat
2r0

根据右手定则判断知,感应电流方向为NMPQN(逆时针方向).
在t时刻金属杆MN所受的安培力大小为
   F=BIl
代入解得,F=
k2a2l2t3
4r0

根据牛顿第二定律得
   F-F=ma
解得 F=ma+
k2a2l2t3
4r0

(3)位移为x时,杆运动的时间为△t=t=

2x
a

由于B随x均匀变化,则感应电动势平均值为
.
B
=
0+kx
2
=
1
2
kx

根据法拉第电磁感应定律得 
.
E
=
△Φ
△t
=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长