电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.

◎ 题目

电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Qr=0.1J.(取g=10m/s2)求:
(1)金属棒在此过程中克服安培力的功W
(2)金属棒下滑速度v=2m/s时的加速度a.
(3)为求金属棒下滑的最大速度vm,有同学解答如下:由动能定理W-W=
1
2
mvm2
,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.
魔方格

◎ 答案

(1)下滑过程中安培力的功即为在金属棒和电阻上产生的焦耳热,
   由于R=3r,因此QR=3Qr=0.3J
   故W=Q=QR+Qr=0.4J
(2)金属棒下滑时受重力和安培力F=BIL=
B2L2
R+r
v

    由牛顿第二定律mgsin30°-
B2L2
R+r
v=ma

     故a=gsin30°-
B2L2
m(R+r)
v=10×
1
2
-
0.82×0.752×2
0.2×(1.5+0.5)
=3.2(m/s2)

(3)此解法正确.
   金属棒下滑时重力、支持力和安培力作用,根据牛顿第二定律
       mgsin30°-
B2L2
R+r
v=ma

   上式表明,加速度随速度增加而减小,棒作加速度减小的加速运动.无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大.由动能定理可以得到棒的末速度,因此上述解法正确.
       mgSsin30°-Q=
1
2
mvm2

    故vm=

2gSsin30°-
2Q
m
=

2×10×1.15×
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
1
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长