如图甲所示,两根相距为L的金属轨道固定于水平面上,导轨电阻不计,一根质量为m、长为L、电阻为R的金属棒两端放于导轨上,导轨与金属棒间的动摩擦因数为μ,棒与导轨的接触电

◎ 题目

如图甲所示,两根相距为L的金属轨道固定于水平面上,导轨电阻不计,一根质量为m、长为L、电阻为R的金属棒两端放于导轨上,导轨与金属棒间的动摩擦因数为μ,棒与导轨的接触电阻不计.导轨左端连有阻值为2R的电阻,在电阻两端接有电压传感器并与计算机相连.有n段竖直向下的宽度为a间距为b的匀强磁场(a>b),磁感强度为B、金属棒初始位于OO′处,与第一段磁场相距2a.

魔方格

(1)若金属棒有向右的初速度v0,为使金属棒保持v0一直向右穿过各磁场,需对金属棒施加一个水平向右的拉力,求金属棒进入磁场前拉力F1的大小和进入磁场后拉力F2的大小;
(2)在(1)的情况下,求金属棒从OO′开始运动到刚离开第n段磁场过程中,拉力所做的功;
(3)若金属棒初速为零,现对棒施以水平向右的恒定拉力F,使棒穿过各段磁场,发现计算机显示出的电压随时间以固定的周期做周期性变化,在给定的坐标图乙中定性地画出计算机显示的图象(从金属棒进入第一段磁场开始计时).
(4)在(3)的情况下,求整个过程导轨左端电阻上产生的热量,以及金属棒从第n段磁场穿出时的速度.

◎ 答案


(1)金属棒进入磁场前,F1=f=μN=μmg
金属棒在磁场中运动时,F2=f+F=f+BIL
I=
E
2R+R
=
BLv0
3R

联立得  F2=μmg+
B2L2v0
3R

(2)在非磁场区域外力F1所做的功为  W1=F1[2a+(n-1)b]=μmg[2a+(n-1)b]
在磁场区域外力F2所做的功为  W2=F2×na=(μmg+
B2L2v0
3R
)na

在此过程拉力所做的总功  W=W1+W2=μmg[(n+2)a+(n-1)b]+
nB2L2avo
3R

魔方格

(3)要使棒进入各磁场的速度都相同,金属棒在无磁场区域做加速运动,在磁场区域做减速运动,则穿过各段磁场时,感应电动势减小,路端电压减小,而且速度减小时,安培力减小,加速度减小,则路端电压减小变化慢,电压图象的斜率减小,可作出电压图象如图.
(4)进入各磁场时的速度均相同,等于从OO′运动2a位移时的速度,根据动能定理得
   (F-μmg)×2a=
1
2
mv2

每经过一段磁场产生的电能相同,设为E,根据动能定理,有
     Fa-μmga-E=
1
2
mv2-
1
2
mv2

所以
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
E=Fa-μmga-
1
2
mv2+
1
2
mv′2
=Fa-μmga-(F-μmg)(2a-b)+(F-μmg)×2a
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2
如图所示,竖直平面内有一半
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导
两根相距为L的足够长的金属直
如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在
如图所示,两条平行的光滑金
如图(a)所示,光滑且足够长的平行金属导轨MN、PQ与水平面间的倾角θ=30°,两导轨间距L=0.3m。导轨电阻忽略不计,其间连接有阻值R=0.4Ω的固定电阻。开始时,导轨上固定着一质
如图(a)所示,光滑且足够长
如图所示,宽为L=2m、足够长的金属导轨MN和M'N'放在倾角为θ=30°的斜面上,在N和N'之间连有一个1.6Ω的电阻R。在导轨上AA'处放置一根与导轨垂直、质量为m=0.8kg的金属滑
如图所示,宽为L=2m、足够长