用直观思维模型解题 教学内容:《谁是谁的几倍(几分之几)》 执教教师:河南省南阳市第26小学 卢娅
一、课前游戏
师:今天老师给大家出一个谜语,看谁能马上猜出来:一群羊在山坡上吃草,打一种水果。(学生冥思苦想,举手者寥寥无几。)
生:草莓。
(有些学生还是一脸迷茫。)
师:你能给大家解释一下吗?
生:一群羊在草地上吃草,结果是草越吃越少,草没,谐音就是“草莓”。
(其他学生恍然大悟。)
师:想不想再来猜一个?听好了:还是这一群羊在吃草,这时来了一群狼。仍然猜一种水果。
(学生争先恐后地举手。)
生:杨梅。狼来了,吃羊,羊没,谐音就是“杨梅”。
师:为什么大家猜不出第一个谜语,却轻而易举地猜出了第二个谜语呢?
生:(略思考后)因为我知道了第一个谜语的思路,有了这个思路,第二个谜语就不是问题了。
师:对,数学的学习也是如此,它学的也是一种思想、一种思路,有了这种思路,许多数学难题都会迎刃而解。
二、探寻规律
(一)观察思考
(老师在大屏幕上出示如下图片)
师:请你观察,图中造成左右两边不平衡的原因是什么?
生:(很踊跃)因为左右两端放的砖数量不一样,左端两块,右端只有一块。
生:因为左端比右端多1块。
师:你表述得很清楚。那么左端要和右端相等怎么办呢?
生:右端再加1。
师:对,怎么用等式表示出来呢?
生:2=1+1。
师:对。还有其他的表述方法吗?
生:反过来说,就是右端比左端少1块。用等式表示就是1=2-1。
生:也可以说左端是右端的2倍,右端是左端的1/2。用等式表示就是2=1×2和1=2×1/2。
(老师根据学生的回答相应板书。)
师:大家都用到了“=”,你知道为什么等号的上下两横要写得一样长吗?
生:我知道,因为表示等号的两端是相等的关系。
生:因为相等,我们还可以交换等号两端的位置。
师:大家理解了等号的意义,这个等号就是一个数学符号,它确实很形象。大家请看板书。
(这样一来,板书就变成了:左端是右端的2倍,右端是左端的1/2。左端=右端×2倍,右端=左端×1/2。2=1×2,1=2×1/2。)
师:请大家观察板书,请把文字对应数字和数学符号,你发现了什么?
(学生思考后小组讨论,派小组代表发言)
生:我发现“左端”与“右端”寻找平衡,而“是”对应的是“=”,“的”对应的是“×”。
师:真不简单,说得真好!掌声送给这个小组。还有补充吗?
生:我发现2=1×2和1=2×1/2这两个算式都是成立的。文字叙述直接变成了数学符号。
师:你们很善于观察。这实际上就是数学匹配思想的灵魂。文字叙述直接对应“数学符号”,这是只有汉字才具有的优势。
(二)提炼规律
(老师在大屏幕上出示:
观察:
6是3的2倍,2是6的1/3
6=3×2 2=6×1/3
7是2的3倍多1
5是2的3倍少1
7=2×3+1 5=2×3-1
6比8的1/2多2 6=8×1/2+2)
师:再来观察上面这5道题,你怎么让文字对应符号呢?
(学生观察讨论)
生:我们发现文字对应符号,“比”即“=”,“谁的…倍”即“谁×…倍”,“多”即“+”,“少”即“—”。
师:很好,这就是我们今天学习的一个数学模型:谁是/比谁的几倍/几分之几(多/少几)。在建立模型时,见多就加,见少就减,顺应人们的思维习惯。我们在解决数学问题时,可以边读题,边建模,必要时,再转换数量关系。
三、应用拓展
师:下面我们运用今天所学的内容来解决一些问题。
1. (二年级下册)停车场卡车的辆数是客车的6倍,客车有7辆,卡车有多少辆?
2. (三年级下册)一只东北虎的体重是360千克,它的体重是一只鸵鸟的4倍,是一只企鹅的9倍。鸵鸟和企鹅的体重各是多少?
3. (四年级上册)今年在我国一个湖区越冬的有16只白鹤,176只白天鹅。白天鹅的只数是白鹤的几倍?
(学生分析,列式。)
生:我来答第1题,卡车=客车×6,带入数量是?=7×6,算式是7×6=42(辆)。
生:我来答第2题,东北虎=鸵鸟×4,东北虎=白鹤×9,代入数量是360=鸵鸟?×4,360=白鹤?×9,这两个关系式都是求其中一个乘数的,用除法。算式是360÷4=90,360÷9=40。
生:我来答第3题,白天鹅=白鹤×几倍,带入数量是176=16×?,求其中一个乘数用除法,算式是176÷16=11。
师:大家文字对应符号,转化成关系式,三量关系掌握得很好,做题的速度也很快。我们建立模型解决问题的优势就是:边读题,边列式,“符号”直接对“文字”。读题的过程就是思考的过程,就是列三量关系式的过程,有了关系式,算式也就出来了。
师:看来三、四年级的题都难不倒大家,想不想挑战更高年级的题?我们跳过五年级,直接挑战六年级的一道题,有没有信心?
(学生很自信,学习兴趣高涨。教师再出示第4题。)
4. (六年级上册)世界第一长河——尼罗河全长6670千米,长江比尼罗河还长297千米。长江全长多少千米?
(学生练习,找生板演。学生分析、做题速度明显快了。)
生:(面向自己的板书,为大家讲解。)我来答第3题,“长江比尼罗河还长297千米”,转化为“?=6670×+297”,直接列出算式6670×+297。
师:大家的做题速度和准确率越来越高。老师忘了告诉大家,第4道题实际上是六年级上册课本上的一道*题,也就是一道难题。大家觉得它难了吗?
生:(惊奇)不难!
四、课堂总结
师:通过今天的学习,大家有什么收获?
(学生发言积极,跃跃欲试。)
生:上了这节课,我是三年级的学生,我做四年级的题完全没有问题,还敢挑战六年级的题呢!
生:像上课开始的猜谜语那样,我掌握了学习的一种思路,感觉到数学学起来挺容易的。
生:我感觉这种学习数学的方法挺直观的,我边读题边列式,读完题算式都列出来了。
……
师:大家都说出了自己的真实感受。除了倍数问题,我们完全可以把“几分之几”、“百分之几”理解为“倍”,可以解决有关的所有问题。有了这种建模的思想,我们的思路非常直观:边读题,边建模,边列式,轻轻松松学数学。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |