观课笔记追寻有效的理解性问题
在数学课堂教学中,有时教师提出的问题需要学生梳理已有知识和概念,然后结合生活经验进行信息加工,通过思考才能得出答案,我们称这样的问题为理解性问题。毫无疑问,理解性问题在数学课堂中价值重大,是促进学生深度思考、培养学生数学素养的重要抓手。
那么,如何提出有价值的理解性问题?这是教师在教学设计时不断思考的一个问题。
前不久,我在校内听评课活动中,一位青年教师讲完二面角后,为了检查一下学生是否真的理解了相关概念,他来到教室门边,告诉学生开着的门和墙面各自所在的平面可以构成一个二面角。然后问学生,“把门开大一点是什么意思?从数学的角度看有什么变化”?有学生给出了老师想要的答案,“门开大一点,是二面角的平面角变大了”。但在学生的回答中,有学生提出“门开大一点,风进来的更大了”。瞬间,这突兀的回答让教室安静下来。这位老师并没有回应,继续课堂教学。
用教室里的开关门来演示二面角的大小变化,本来是比较贴切的实例,应该是这节课的得意之笔,为什么会出现这种情况呢?
在评课环节,与会教师一致认可授课教师借助实例帮助学生在头脑中构建相应的形象,加深理解二面角这个概念的做法。但对授课教师提出的问题表示质疑——教师用实例演示的目的是帮助学生理解二面角的平面角可以反映二面角的大小。可是,学生找到了开关门的过程与二面角的大小之间的联系了吗?
这时,这位青年教师才意识到学生为什么会在课堂上给出让人啼笑皆非的答案。原来,要回答出老师预想的答案,必须理解开着的门所在的平面与墙面所在的平面可以构成一个二面角,以及门、墙面和地面的交线构成的角是这个二面角的平面角。如果学生理解了授课教师的意图,能够把课本知识与自身认知结构进行适合连接,回答这个问题并加深对这个概念理解是没有问题的。但是如果学生对二面角的平面角这个概念的理解不够,问这个问题就显得有些不知所措。
于是,在后续的磨课中,我们给出了这样的建议:在问这个问题之前,让学生指出这个实例的二面角中两个半平面以及二面角的棱各是什么,找一找哪个角可以作为这个二面角的平面角,然后再问这个问题。这样的改变,不仅可以帮助学生找到实例与知识之间的联系,让问题的情境更加清晰,而且细化了实例演示中蕴含的问题,形成了问题串,让学生思维在探究过程中平稳过渡。
好的问题是教学成功的核心。问题不仅引导着学生思维前进的方向,而且为随后的学生回应提供框架。教学中,教师要想通过有质量的理解性问题启动学生的思维,促进知识的有效构建,一定要关注到学生的多样性,要让问题一头贴近学生的生活,一头突出知识的本质,而且还要让问题有内在的结构,低起点,有坡度,呈现结构化、层次化和生成化。
(作者单位系湖北省保康县中等职业技术学校)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |