在直线上面的□里填分数,下面的□里填整数或小数。-六年级数学
题文
在直线上面的□里填分数,下面的□里填整数或小数。 |
答案
上面:-或-1; 下面:-1;2.4 |
据专家权威分析,试题“在直线上面的□里填分数,下面的□里填整数或小数。-六年级数学-魔..”主要考查你对 分数的认识及意义,小数的产生及意义,认识正负数 等考点的理解。关于这些考点的“档案”如下:
分数的认识及意义小数的产生及意义认识正负数
考点名称:分数的认识及意义
- 分数的认识:
1、单位“1”
2、分数
把单位“1”平均分成若干份,表示这样一份或者几份的数叫做分数。
如:
一堆糖,平均分成2份,每份是这堆糖的
一堆糖,平均分成3份,2份是这堆糖的
一堆糖,平均分成4份,3份是这堆糖的
一堆糖,平均分成6份,5份是这堆糖的
3、分数单位:表示其中一份的数就是分数单位。如的分数单位是 - 分数的意义:
把一个物体或一个计量单位平均分成若干份,这样的一份或几份可用分数表示。在分数里,中间的横线叫做分数线;分数线下面的数叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。
考点名称:小数的产生及意义
- 小数的产生:
在实际测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。由于日常生活和生产的需要,从而产生了小数。 - 小数位间的进率:
小数点右边第一位叫十分位,计数单位是十分之一(0.1),第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。
0.10.010.001… - 小数的意义:
1、分母是10、100、1000…的分数,可以用小数表示。这就是小数的意义。
把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。
我们可以理解:
一位小数:表示把一个整体平均分成10份,取了其中的一份或几份。
二位小数:表示把一个整体平均分成100份,取了其中的一份或几份。
三位小数:表示把一个整体平均分成1000份,取了其中的一份或几份。
如:0.36表示把整体“1”平均分成(100)份,取其中的(36)份。
考点名称:认识正负数
正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。
任何正数前加上负号都等于负数,表示相反意义的数,负数比零小。
正数定义:
比0大的数叫正数。正数前面常有一个符号“+”,通常可以省略不写。
正数有无数个,包括正整数,正分数和正无理数。
正数的几何意义:
在数轴上表示正数的点都在数轴上0的右边。
正数即正实数,它包括正整数、正分数(含正小数)。而正整数只是正数中的一小部分。
而正数不包括0,大于0的才是正数。负数:
是数学术语,指小于0的实数,如?3。
在数轴线上,负数都在0的左侧,没有最大与最小的负数,所有的负数都比自然数小。
负数用负号(即相当于减号)“-”标记,如?2,?5.33,?45,?0.6等。去除负数前的负号等于这个负数的绝对数。-2的绝对值为2,-5.33的绝对值为5.33,-45的绝对值为45,-0.6的绝对值为0.6等。
负数是同绝对值正数的相反数。任何正数前加上负号都等于负数。
分数也可做负数,如:-2/50既不是正数也不是负数。
零上温度我们用正数表示,零下温度就用负数表示,
温度计(数轴)中0右边的数是正数,0左边的数是负数。负数的计算法则:
加法:
负数1+负数2=-|负数1+负数2|=负数
负数+正数=符号取绝对值较大的加数的符号,数值取“用较大的绝对值减去较小的绝对值 ”的所得值
减法:
负数1-负数2=负数1+|负数2| =负数1加上负数2的相反数,再按负数加正数的方法算
负数-正数=-|正数+负数|=负数异号两数相减,等于其绝对值相加
乘法:
负数1×负数2=|负数1×负数2| =正数
负数×正数=-|正数×负数| =负数
除法:
负数1÷负数2=|负数1÷负数2| =正数
负数÷正数=-|负数÷正数| =负数
总得来说,就是同数相除等于正数,异数相除等于负数。负数的由来:
人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。
据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。
中国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。
刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。
中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,[2]正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”
这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是中国数学家杰出的贡献之一。
用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。
负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |