在比例尺为的地图上,量得甲城到乙城的图上距离是9厘米,现在有一辆客车和一辆货车同时从甲、乙两城相对开出,客车每小时行100千米,货车的速度是客车的。两车出发后几小时相-六年级数学

题文

在比例尺为的地图上,量得甲城到乙城的图上距离是9厘米,现在有一辆客车和一辆货车同时从甲、乙两城相对开出,客车每小时行100千米,货车的速度是客车的。两车出发后几小时相遇?
题型:解答题  难度:中档

答案

=54000000(厘米)=540千米
540÷(100+100×)=3(小时)

据专家权威分析,试题“在比例尺为的地图上,量得甲城到乙城的图上距离是9厘米,现在有一..”主要考查你对  分数的四则混合运算及应用,比例尺  等考点的理解。关于这些考点的“档案”如下:

分数的四则混合运算及应用比例尺

考点名称:分数的四则混合运算及应用

  • 运算顺序:
    分数四则混合运算的运算顺序和整数则混合运算的运算顺序相同:
    一个算式里,如果只含有两级运算,先算第一级运算,再算第二级运算。
    在含有括号的算式里,先算小括号里面的,再算中括号里面的,最后算括号外面的。

    计算法则:
    分数乘法的意义:
    分数乘以整数  —×12  表示12个—是多少。
    整数乘以真分数  12×—  表示12的—是多少。
    分数乘以真分数  —×—  —的—是多少。
    一个数乘以带分数  —×1—  表示—的1—倍是多少。

    分数加、减法的计算法则:
    同分母分数相加减,分母不变,分子相加减。
    异分母分数相加减,先通分,再按同分母方法计算。

    分数乘除法计算方法:
    分数乘法,分子相乘作分子,分母相乘作分母。
    分数除法,乘以除数的倒数。

  • 分数四则运算的意义:
    加法:
    把两个数合并成一个数的运算 把两个小数合并成一个小数的运算 把两个分数合并成一个分数的运算;
    减法:
    已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算;
    乘法:
    求几个相同加数的和的简便运算,小数乘整数的意义与整数乘法意义相同;
    一个数乘纯小数就是求这个数的十分之几,百分之几……
    除法:
    已知两个因数的积与其中一个因数,求另一个因数的运算,与整数除法的意义相同.

考点名称:比例尺

  • 比例尺:
    表示图上距离比实地距离缩小的程度,因此也叫缩尺。图上距离和实际距离的比,叫做这幅图的比例尺。
    即:图上距离:实际距离=比例尺; =比例尺

  • 比例尺分类:
    比例尺一般分为数值比例尺和线段比例尺:
    (1)数值比例尺:例如一幅图的比例尺是1:20000或。为了方便,通常把比例尺写成前项(或后项)是1的比。
    (2)线段比例尺是在图上附上一条标有数量的线段,用来表示实际相对应的距离。

    比例尺表示方法
    用公式表示为:比例尺=。比例尺通常有三种表示方法。
    ①数字式,用数字的比例式或分数式表示比例尺的大小。例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
    ②线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
    ③文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一。
    三种表示方法可以互换。必须化单位。
    在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
    这时,就要确定图上距离和相对应的实际距离的比。

  • 比例尺公式:
    图上距离=实际距离×比例尺 
    实际距离=图上距离÷比例尺 
    比例尺=图上距离÷实际距离

    单位换算:
    在比例尺计算中要注意单位间的换算:1公里=1千米=1×1000米=1×100000厘米
    图上用厘米,实地用千米,厘米换千米,去五个零;
    千米换厘米,在千的基础上再加两个零。

    计算方法:
    ①如果将原比例尺放大到n倍;那么原比例×n。
    ②如果将原比例尺放大n倍;那么原比例×(n+1)。
    ③如果将原比例尺缩小到1/n;那么原比例×1/n。
    ④如果将原比例尺缩小1/n;那么原比例×(1-1/n)。
    ⑤比例尺缩放后,原面积之比会变为缩放倍数的平方。