(1)(2)15.28-3.99-9.01(3)(4)25×125×32-六年级数学

题文

(1) (2)15.28-3.99-9.01
(3) (4)25×125×32
题型:计算题  难度:中档

答案

(1)
  =
  =30
(2)15.28-3.99-9.01
  =15.28-(3.99+9.01)
  =15.28-13
  =2.28
 
(3)
  =
  =14

(4)25×125×32
  =25×4×125×8
  =(25×4)×125×8
  =100×1000
  =100000

据专家权威分析,试题“(1)(2)15.28-3.99-9.01(3)(4)25×125×32-六年级数学-”主要考查你对  分数的四则混合运算及应用,乘法结合律和交换律,小数的简便算法,分数的简便算法  等考点的理解。关于这些考点的“档案”如下:

分数的四则混合运算及应用乘法结合律和交换律小数的简便算法分数的简便算法

考点名称:分数的四则混合运算及应用

  • 运算顺序:
    分数四则混合运算的运算顺序和整数则混合运算的运算顺序相同:
    一个算式里,如果只含有两级运算,先算第一级运算,再算第二级运算。
    在含有括号的算式里,先算小括号里面的,再算中括号里面的,最后算括号外面的。

    计算法则:
    分数乘法的意义:
    分数乘以整数  —×12  表示12个—是多少。
    整数乘以真分数  12×—  表示12的—是多少。
    分数乘以真分数  —×—  —的—是多少。
    一个数乘以带分数  —×1—  表示—的1—倍是多少。

    分数加、减法的计算法则:
    同分母分数相加减,分母不变,分子相加减。
    异分母分数相加减,先通分,再按同分母方法计算。

    分数乘除法计算方法:
    分数乘法,分子相乘作分子,分母相乘作分母。
    分数除法,乘以除数的倒数。

  • 分数四则运算的意义:
    加法:
    把两个数合并成一个数的运算 把两个小数合并成一个小数的运算 把两个分数合并成一个分数的运算;
    减法:
    已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算 已知两个加数的和与其中一个加数,求另一个加数的运算;
    乘法:
    求几个相同加数的和的简便运算,小数乘整数的意义与整数乘法意义相同;
    一个数乘纯小数就是求这个数的十分之几,百分之几……
    除法:
    已知两个因数的积与其中一个因数,求另一个因数的运算,与整数除法的意义相同.

考点名称:乘法结合律和交换律

  • 学习目标:
    1、经历探索过程,发现乘法结合律和交换律,并用字母表示。     
    2、在理解乘法结合律和交换律的基础上,会对一些算式进行简便计算。

  • 乘法交换律:
    两个数相乘,交换因数的位置,它们的积不变。a×b=b×a,10×12=12×10

    乘法结合律:
    三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,他们的积不变。a×b×c=a×(b×c),12×25×4=12×(25×4)

考点名称:小数的简便算法

  • 小数的简便算法:
    整数乘法的运算定律在小数中同样适用.

  • 方法点拨:
    乘法交换律:a×b=b×a 
    乘法结合律: (a×b)×c=a×(b×c)
    乘法分配律: a×(b+c)=a×b+a×c
    如:2.5×0.4×1.3×=1.3×( 2.5× 0.4 )
    3.6×4.2+3.2×5.8=3.6×(4.2 +5.8)
    7.6×200.1=7.6×200+7.6×0.1
    35.6×101-35.6=35.6×(100- 1)

    解题方法: 
    1、审题:看清题目有什么特征,是否可以用简便方法计算;
    2、转化:合理地把一个因数分成两个数的积、和或差;
    3、运算:正确应用乘法的运算定律进行简便运算;
    4、检查:解题方法和结果是否正确。

考点名称:分数的简便算法

  • 分数的简便算法:
    把整数的运算定律应用到分数中。
    分数加减法运算中,同分母的先合并相加,或先相加分母互为倍数关系的,相加的和再与异分母分数正常通分相加减;
    分数乘除法运算中,先通式变为乘法运算,再优先计算可以相乘得整数的分数,即分子、分母相同的两个分数。再计算剩下的。