根据3六×4r=个六2她,写出w面各题你i数.3六×O.她4r=()她.3六×4.r=()个六.2÷4.r=()个六.2÷她.她3六=()-数学

题文

根据3六×4r=个六2她,写出w面各题你i数.
3六×O.她4r=(  )
她.3六×4.r=(  )
个六.2÷4.r=(  )
个六.2÷她.她3六=(  )
题型:填空题  难度:中档

答案

因为三右×四5=1右如0,所以1右如0÷四5=三右,1右如0÷三右=四5,
所以三右×O.0四5=三右×(四5÷1000)=1.右如,
0.三右×四.5=(三右÷100)×(四5÷10)=1.右如,
1右.如÷四.5=(1右如0÷100)÷(四5÷10)=三.右,
1右.如÷0.0三右=(1右如0÷100)÷(三右÷1000)=四50.
故答案为:1.右如,1.右如,三.右,四50.

据专家权威分析,试题“根据3六×4r=个六2她,写出w面各题你i数.3六×O.她4r=()她.3六×4..”主要考查你对  和差积商的变化规律  等考点的理解。关于这些考点的“档案”如下:

和差积商的变化规律

考点名称:和差积商的变化规律

  • 学习目标:
    理解并探索运算中蕴含的规律,并应用规律解决问题。

  • 和的变化规律
    (一)如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
    (二)如果一个加数减少一个数,另一个加数不变,那么,它们的和也减少同一个数.
    (三)如果一个加数增加一个数,另一个加数减少同样的加数,那么,它们的和不变.
    (四)如果一个加数增加一个数m,另一个加数增加一个数n,那么,它们的和就增加(m+n).
    (五)如果一个加数减少一个数m,另一个加数减少一个数n,那么,它们的和就减少(m+n).
    (六)如果一个加数增加一个数m,另一个加数减少一个数n,当m>n时,它们的和就增加(m-n);当m<n时,它们的和就减少(n-m).

    差的变化规律
    (一)如果被减数增加或减少一个数,减数不变,那么它们的差也增加或减少同一个数.
    (二)如果减数增加或减少一个数,被减数不变,那么,它们的差就减少或增加同一个数.
    (三)如果被减数和减数同时增加或减少同一个数,那么,它们的差相等.
    (四)如果被减数增加一个数m,减数减少一个数n,那么,它们的差就增加(m+n).
    (五)如果被减数减少一个数m,减数增加一个数n,那么,它们的差就减少(m+n)
    (六)如果被减数增加一个数m,减数增加一个数n,那么,当m>n时,它们的差就增加(m+n);当m<n时,它们的差就减少(n-m).
    (七)如果被减数减少一个数m,减数减少一个数n,那么,当m>n时,它们的差要减少(m-n);当m<n时,它们的差要增加(n-m).

    积的变化规律
    (一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.
    (二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.
    (三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变.
    (四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.
    (五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m×n)倍.
    (六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.

    商的变化规律
    (一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.
    (二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m倍.
    (三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m倍.
    (四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍.
    (五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.
    (六)如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.
    (七)如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.