试一试,算一算,你会有很多发现哦!4×3=13×2=4×O.3=1.3×2=4×0.03=0.13×2=-数学
题文
|
答案
计算得出: 4×3=12; 13×2=26; 4×0.3=1.2; 1.3×2=2.6; 4×0.03=0.12; 0.13×2=0.26; 我发现:两数相乘,一个因数不变,另一个因数扩大或缩小若干倍(0除外),积也扩大或缩小相同的倍数. 故答案为:12;26;1.2; 2.6;0.12;0.26. |
据专家权威分析,试题“试一试,算一算,你会有很多发现哦!4×3=13×2=4×O.3=1.3×2=4×0...”主要考查你对 和差积商的变化规律 等考点的理解。关于这些考点的“档案”如下:
和差积商的变化规律
考点名称:和差积商的变化规律
- 学习目标:
理解并探索运算中蕴含的规律,并应用规律解决问题。 - 和的变化规律
(一)如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
(二)如果一个加数减少一个数,另一个加数不变,那么,它们的和也减少同一个数.
(三)如果一个加数增加一个数,另一个加数减少同样的加数,那么,它们的和不变.
(四)如果一个加数增加一个数m,另一个加数增加一个数n,那么,它们的和就增加(m+n).
(五)如果一个加数减少一个数m,另一个加数减少一个数n,那么,它们的和就减少(m+n).
(六)如果一个加数增加一个数m,另一个加数减少一个数n,当m>n时,它们的和就增加(m-n);当m<n时,它们的和就减少(n-m).
差的变化规律
(一)如果被减数增加或减少一个数,减数不变,那么它们的差也增加或减少同一个数.
(二)如果减数增加或减少一个数,被减数不变,那么,它们的差就减少或增加同一个数.
(三)如果被减数和减数同时增加或减少同一个数,那么,它们的差相等.
(四)如果被减数增加一个数m,减数减少一个数n,那么,它们的差就增加(m+n).
(五)如果被减数减少一个数m,减数增加一个数n,那么,它们的差就减少(m+n)
(六)如果被减数增加一个数m,减数增加一个数n,那么,当m>n时,它们的差就增加(m+n);当m<n时,它们的差就减少(n-m).
(七)如果被减数减少一个数m,减数减少一个数n,那么,当m>n时,它们的差要减少(m-n);当m<n时,它们的差要增加(n-m).
积的变化规律
(一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.
(二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.
(三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变.
(四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.
(五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m×n)倍.
(六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.
商的变化规律
(一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.
(二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m倍.
(三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m倍.
(四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍.
(五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.
(六)如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.
(七)如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:王阿姨用来算账的计算器坏了,计算器的显示屏上显示不出小数点,你能帮她算出下列算式的结果吗?已知:36×24=864那么:3.6×24=______36×2.4=______0.36×24=______.-数学
下一篇:与0.15÷1.2的商相等的式子是()A.15÷12B.1.5÷12C.150÷12-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |