从下面哪组数中任选两个数,这两个数的和是奇数的可能性大[]A.2,3,5B.1,3,5C.2,4,6-六年级数学
题文
从下面哪组数中任选两个数,这两个数的和是奇数的可能性大 |
[ ] |
A.2,3,5 B.1,3,5 C.2,4,6 |
答案
A |
据专家权威分析,试题“从下面哪组数中任选两个数,这两个数的和是奇数的可能性大[]A.2..”主要考查你对 奇数,偶数,可能性,概率 等考点的理解。关于这些考点的“档案”如下:
奇数,偶数可能性,概率
考点名称:奇数,偶数
- 奇数、偶数:
在自然数中,能被2整除的数,叫做偶数;不能被2整除的数是奇数。 - 奇数偶数性质:
偶数±偶数=偶数 奇数±奇数=偶数
偶数±奇数=奇数 奇数×奇数=奇数
偶数×偶数=偶数 奇数×偶数=偶数
0是一个特殊的偶数:
它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。
考点名称:可能性,概率
可能性:
是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。有些事件的发生是确定的,有些是不确定的。用“可能”、“不可能”“一定”等表达事物发生的情况。
常见方法有:抛骰子、摸球、转盘。
概率:
又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。随机事件:
有些事件在一定的条件下可能发生,也可能不发生,结果不确定。例如,购买彩票能否 中奖,开出的列车能否正点到达。明年今天是否下雨等待,我们称之为随机事件。
我们用随机事件的“概率”来表示随机事件发生可能性大小:概率是0到1之间的一个数,概率随机事件发生的可能性大。
在小学阶段我们只计算最简单的一些随机事件的概率,这种计算方法以“等可能性”为基础。在有些情况下,虽然有些事情的结果是不确定的(随机性的),但是由于某种“对称性”,不同的基本结果发生的可能性是相同的,这时,我们说这些基本结果是等可能的,从而确定相关事件的概率。例如:
投一枚均匀硬币,“出现正面”“出现反面”这两种基本结果是等可能的,所以“出现正面”和“出现反面”的概率都是1/2;
投一枚色子(骰子),“出现1点”“出现2点”......“出现6点”这六种基本情况是等可能的,其概率是1/6 。
对于随机事件,我们关心的是事件发生的可能性。
事件发生的可能性大小是可以比较的,所以人们常说一件事情“不可能”""不大可能”“很可能”“非常可能”“绝对可能”......这些说法反应可能性大小的不同程度。
射击时,“射中十环”的可能性比“射中九环”的可能性小;
一分钟投篮,“投中15个”比“投中10个”的可能性小
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |