直抒胸臆:578+216=18.25-3.3=3.2-12=19×8.1=12+13=214÷3=0.99×9+0.99=214×127=112×8+112×2=21710÷7=-数学

考点名称:万以内的数的加法和减法

  • 学习目标:
    掌握竖式计算万以内数的加法,减法,用解决实际问题。

  • 方法点拨:
    1. 万以内加法:
    列竖式进行万以内的加法运算步骤:
    1、列竖式;
    2、相同数位一定要对齐;
    3、哪一位上的数相加满十,就要向前一位进1; 如果前一位也满十,再向前一位进1;
    4、写答案。

    2. 万以内减法
    列竖式进行万以内的减法运算步骤:
    1、列竖式;
    2、相同数位一定要对齐;
    3、减法时,哪一位上的数不足减,向前一位借1; 如果前一位是0,再向前一位借1。
    4、写答案。

    3、加减法的验算:

考点名称:小数的加法和减法

  • 学习目标:
    1、学习、探索小数加法和减法的计算方法。 
    2、理解小数点对齐的道理,掌握小数加法和减法的计算方法。

  • 方法点拨:
    小数加法:小数点对齐,最低位加起,满十向前一位进一。 
    小数减法:小数点对齐,最低位减起,不够减借1还10。

考点名称:运算定律和简便算法

  • 学习目标:
    1、掌握运算定律,并能运用运算定律和性质进行正确、合理、灵活的计算。
    2、养成良好审题习惯,提高计算能力。

  • 运算定律:
    名称 内容 字母表示 用数举例
    加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a 25+14=14+25
    加法结合律 三个数相加,先把前两数相加,再同第三个数相加,
    或者先把后两数相加,再同第一个数相加,它们的和不变。
    a+b+c=
    a+(b+c)
    20+14+36=
    20+(14+36)
    乘法交换律 两个数相乘,交换因数的位置,它们的积不变。 a×b=b×a 10×12=12×10
    乘法结合律 三个数相乘,先把前两个数相乘,再同第三个数相乘,
    或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
    a×b×c=
    a×(b×c)
    12×25×4=
    12×(25×4)
    乘法分配律 两个数的和同一个数相乘,可以把两个加数分别和这个
    数相乘,再把两个积相加,结果不变。
    (a+b)×c=
    a×c+b×c
    (12+15)×4=
    12×4+15×4

  • 运算性质:

    名称

    内容

    字母表示

    用数举例

    减法的性质 一个数连续减去几个数等于一个数减去这几个数的和 a-b-b=
    a-(b+c)
    250-18-52=
    250-(18+52)
    除法的性质 一个数连续除以几个数(0除外)等于一个数除以这几个数的积 a÷b÷c=
    a÷(b×c)
    180÷4÷25=
    180÷(4×25)

考点名称:分数的加法和减法(异分母)

  • 分数加、减计算法则:
    ①分母相同时,只把分子相加、减,分母不变;
    例如1/2+3/2=(1+3)/2=4
    ②分母不相同时,要先通分成同分母分数再相加、减。
    1/2+2/3=3/6+4/6=7/6

考点名称:分数乘法的意义和分数乘法的计算法则

  • 分数乘法有两个意义:
    1.分数乘以整数:和整数乘法意义相同,就是求几个相同加数的运算
    2.一个数乘以分数:是求一个数的几分之几是多少
    分数乘法法则:
    1.分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变。(要约成最简分数)
    2.分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要约成最简分数(在计算中约分)。
    但分子和分母不能为零。

  • 分数与整数乘法意义:
    不完全相同:
    分数乘以整数的意义 就和整数乘法的意义相同;
    分数乘以分数的意义 就和整数乘法的意义不相同:
    乘法的意义就是求几个相同加数和的简便运算。小数乘法和分数乘法的意义之所以教材中出现两种说法(分数乘整数的意义和整数乘法的意义相同,一个数成分数的意义就是求这个数的几分之几是多少),实际上是“意义的扩展”比如:6*2/3表示6的2/3。
    再在进一步理解:就是把6平均分成3份,表示这样2份的数。实际上也就是2/3个6。但基于说法不太符合常理,而改变成人们习惯的说法