用简便方法计算下列各题.(1)825÷25(2)47700÷900.-数学

题文

用简便方法计算下列各题.
(1)825÷25
(2)47700÷900.
题型:解答题  难度:中档

答案

(1)825÷25,
=(825×4)÷(25×4),
=3300÷100,
=33;
(2)47700÷900,
=(47700÷100)÷(900÷100),
=477÷9,
=53.

据专家权威分析,试题“用简便方法计算下列各题.(1)825÷25(2)47700÷900.-数学-”主要考查你对  运算定律和简便算法,和差积商的变化规律  等考点的理解。关于这些考点的“档案”如下:

运算定律和简便算法和差积商的变化规律

考点名称:运算定律和简便算法

  • 学习目标:
    1、掌握运算定律,并能运用运算定律和性质进行正确、合理、灵活的计算。
    2、养成良好审题习惯,提高计算能力。

  • 运算定律:
    名称 内容 字母表示 用数举例
    加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a 25+14=14+25
    加法结合律 三个数相加,先把前两数相加,再同第三个数相加,
    或者先把后两数相加,再同第一个数相加,它们的和不变。
    a+b+c=
    a+(b+c)
    20+14+36=
    20+(14+36)
    乘法交换律 两个数相乘,交换因数的位置,它们的积不变。 a×b=b×a 10×12=12×10
    乘法结合律 三个数相乘,先把前两个数相乘,再同第三个数相乘,
    或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
    a×b×c=
    a×(b×c)
    12×25×4=
    12×(25×4)
    乘法分配律 两个数的和同一个数相乘,可以把两个加数分别和这个
    数相乘,再把两个积相加,结果不变。
    (a+b)×c=
    a×c+b×c
    (12+15)×4=
    12×4+15×4

  • 运算性质:

    名称

    内容

    字母表示

    用数举例

    减法的性质 一个数连续减去几个数等于一个数减去这几个数的和 a-b-b=
    a-(b+c)
    250-18-52=
    250-(18+52)
    除法的性质 一个数连续除以几个数(0除外)等于一个数除以这几个数的积 a÷b÷c=
    a÷(b×c)
    180÷4÷25=
    180÷(4×25)

考点名称:和差积商的变化规律

  • 学习目标:
    理解并探索运算中蕴含的规律,并应用规律解决问题。

  • 和的变化规律
    (一)如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
    (二)如果一个加数减少一个数,另一个加数不变,那么,它们的和也减少同一个数.
    (三)如果一个加数增加一个数,另一个加数减少同样的加数,那么,它们的和不变.
    (四)如果一个加数增加一个数m,另一个加数增加一个数n,那么,它们的和就增加(m+n).
    (五)如果一个加数减少一个数m,另一个加数减少一个数n,那么,它们的和就减少(m+n).
    (六)如果一个加数增加一个数m,另一个加数减少一个数n,当m>n时,它们的和就增加(m-n);当m<n时,它们的和就减少(n-m).

    差的变化规律
    (一)如果被减数增加或减少一个数,减数不变,那么它们的差也增加或减少同一个数.
    (二)如果减数增加或减少一个数,被减数不变,那么,它们的差就减少或增加同一个数.
    (三)如果被减数和减数同时增加或减少同一个数,那么,它们的差相等.
    (四)如果被减数增加一个数m,减数减少一个数n,那么,它们的差就增加(m+n).
    (五)如果被减数减少一个数m,减数增加一个数n,那么,它们的差就减少(m+n)
    (六)如果被减数增加一个数m,减数增加一个数n,那么,当m>n时,它们的差就增加(m+n);当m<n时,它们的差就减少(n-m).
    (七)如果被减数减少一个数m,减数减少一个数n,那么,当m>n时,它们的差要减少(m-n);当m<n时,它们的差要增加(n-m).

    积的变化规律
    (一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.
    (二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.
    (三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变.
    (四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.
    (五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m×n)倍.
    (六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.

    商的变化规律
    (一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.
    (二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m倍.
    (三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m倍.
    (四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍.
    (五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.
    (六)如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.
    (七)如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.