脱式计算.99×87+8718.7-3.375-6.625525×(34+0.5)÷214415÷[(57-314)÷34].-数学
考点名称:运算定律和简便算法
- 学习目标:
1、掌握运算定律,并能运用运算定律和性质进行正确、合理、灵活的计算。
2、养成良好审题习惯,提高计算能力。 - 运算定律:
名称 内容 字母表示 用数举例 加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a 25+14=14+25 加法结合律 三个数相加,先把前两数相加,再同第三个数相加,
或者先把后两数相加,再同第一个数相加,它们的和不变。a+b+c=
a+(b+c)20+14+36=
20+(14+36)乘法交换律 两个数相乘,交换因数的位置,它们的积不变。 a×b=b×a 10×12=12×10 乘法结合律 三个数相乘,先把前两个数相乘,再同第三个数相乘,
或者先把后两个数相乘,再同第一个数相乘,它们的积不变。a×b×c=
a×(b×c)12×25×4=
12×(25×4)乘法分配律 两个数的和同一个数相乘,可以把两个加数分别和这个
数相乘,再把两个积相加,结果不变。(a+b)×c=
a×c+b×c(12+15)×4=
12×4+15×4 - 运算性质:
名称
内容
字母表示
用数举例
减法的性质 一个数连续减去几个数等于一个数减去这几个数的和 a-b-b=
a-(b+c)250-18-52=
250-(18+52)除法的性质 一个数连续除以几个数(0除外)等于一个数除以这几个数的积 a÷b÷c=
a÷(b×c)180÷4÷25=
180÷(4×25)
考点名称:整数的四则混合运算及应用题
- 加、减、乘、除四种运算统称四则运算。
加法的意义:把两个(或几个)数合并成一个数的运算叫做加法。
减法的意义:已知两个加数的和与其中的一个加数求另一个加数的运算叫做减法。减法中,已知的两个加数的和叫做被减数,其中一个加数叫做减数,求出的另一个加数叫差。
乘法的意义:一个数乘以整数,是求几个相同加数的和的简便运算,或是求这个数的几倍是多少。
除法的意义:已知两个因数的积与其中一个因数求另一个因数的运算叫做除法。在除法中,已知的两个因数的积叫做被除数,其中一个因数叫做除数,求出的另一个因数叫商。
四则运算分为二级,加减法叫做第一级运算,乘除法叫做第二级运算。 - 方法点拨:
运算的顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。在有括号的算式里,要先算括号里的,再算括号外的。
考点名称:整数,小数,分数,百分数和比例的混合计算
- 算式中含有小数、分数、百分数、比例中任意两种或两种以上的数的运算。叫做他们的混合运算。
运算规律:
整式,小数,分数,百分数,比例的混合运算,通常是保持整式不变,把小数,分数,百分数,比例统一化为小数;若其中有无限小数也可化为分数,再同分按照分数的运算法则进行计算。
考点名称:小数的四则混合运算及应用
- 小数四则混合运算:顺序同整数混合运算的顺序相同,先算第二级运算,再算第一级运算;有括号的先算括号里面的。
验算:
加法的验算
交换加数的位置再算一次,如果得数一样,就是加法做对了;
用得数来减去其中一个加数,如果得数和另一个另数相同就是做对了。
减法的验算
用被减数减去所得的差,如果得数和减数相同,就是减法做对了。
用减数加上所得的差,如果得数和被减数相同,就是减法做对了。乘法的验算:
交换加因数的位置再算一次,如果得数一样,就是乘法做对了;
用得数来除以其中一个因数,如果得数和另一个因数相同就是做对了。
除法的验算:
用被除数除以所得的商,如果得数和除数相同,就是除法做对了。
用除数乘上所得的商,如果得数和被除数相同,就是除法做对了。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
上一篇:2012×16-201.2×70+20120×0.1=______.-数学
下一篇:直接写出得数4700÷125÷8=838+125+158=0.25×0.3÷0.25×0.3=1÷710×710=(14+16)×12=23-12=-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |