302×58=300×58+2×58运用______律使计算简便.已知192÷16=12,我很快得出1.92÷1.6=______.-数学
题文
302×58=300×58+2×58运用______律使计算简便. 已知192÷16=12,我很快得出1.92÷1.6=______. |
答案
(1)302×58, =300×58+2×58, =17400+116, =17516; 此题运用乘法分配律计算简便. (2)因为192÷16=12,被除数192缩小100倍是1.92,除数16缩小10倍是1.6, 所以1.92÷1.6=1.2. 故答案为:乘法分配律,1.2. |
据专家权威分析,试题“302×58=300×58+2×58运用______律使计算简便.已知192÷16=12,我很..”主要考查你对 运算定律和简便算法,和差积商的变化规律 等考点的理解。关于这些考点的“档案”如下:
运算定律和简便算法和差积商的变化规律
考点名称:运算定律和简便算法
- 学习目标:
1、掌握运算定律,并能运用运算定律和性质进行正确、合理、灵活的计算。
2、养成良好审题习惯,提高计算能力。 - 运算定律:
名称 内容 字母表示 用数举例 加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a 25+14=14+25 加法结合律 三个数相加,先把前两数相加,再同第三个数相加,
或者先把后两数相加,再同第一个数相加,它们的和不变。a+b+c=
a+(b+c)20+14+36=
20+(14+36)乘法交换律 两个数相乘,交换因数的位置,它们的积不变。 a×b=b×a 10×12=12×10 乘法结合律 三个数相乘,先把前两个数相乘,再同第三个数相乘,
或者先把后两个数相乘,再同第一个数相乘,它们的积不变。a×b×c=
a×(b×c)12×25×4=
12×(25×4)乘法分配律 两个数的和同一个数相乘,可以把两个加数分别和这个
数相乘,再把两个积相加,结果不变。(a+b)×c=
a×c+b×c(12+15)×4=
12×4+15×4 - 运算性质:
名称
内容
字母表示
用数举例
减法的性质 一个数连续减去几个数等于一个数减去这几个数的和 a-b-b=
a-(b+c)250-18-52=
250-(18+52)除法的性质 一个数连续除以几个数(0除外)等于一个数除以这几个数的积 a÷b÷c=
a÷(b×c)180÷4÷25=
180÷(4×25)
考点名称:和差积商的变化规律
- 学习目标:
理解并探索运算中蕴含的规律,并应用规律解决问题。 - 和的变化规律
(一)如果一个加数增加一个数,另一个加数不变,那么它们的和也增加同一个数。
(二)如果一个加数减少一个数,另一个加数不变,那么,它们的和也减少同一个数.
(三)如果一个加数增加一个数,另一个加数减少同样的加数,那么,它们的和不变.
(四)如果一个加数增加一个数m,另一个加数增加一个数n,那么,它们的和就增加(m+n).
(五)如果一个加数减少一个数m,另一个加数减少一个数n,那么,它们的和就减少(m+n).
(六)如果一个加数增加一个数m,另一个加数减少一个数n,当m>n时,它们的和就增加(m-n);当m<n时,它们的和就减少(n-m).
差的变化规律
(一)如果被减数增加或减少一个数,减数不变,那么它们的差也增加或减少同一个数.
(二)如果减数增加或减少一个数,被减数不变,那么,它们的差就减少或增加同一个数.
(三)如果被减数和减数同时增加或减少同一个数,那么,它们的差相等.
(四)如果被减数增加一个数m,减数减少一个数n,那么,它们的差就增加(m+n).
(五)如果被减数减少一个数m,减数增加一个数n,那么,它们的差就减少(m+n)
(六)如果被减数增加一个数m,减数增加一个数n,那么,当m>n时,它们的差就增加(m+n);当m<n时,它们的差就减少(n-m).
(七)如果被减数减少一个数m,减数减少一个数n,那么,当m>n时,它们的差要减少(m-n);当m<n时,它们的差要增加(n-m).
积的变化规律
(一)如果一个因数扩大m倍,另一个因数不变,那么,它们的积也扩大m倍.
(二)如果一个因数缩小m倍,另一个因数不变,那么,它们的积也缩小m倍.
(三)如果一个因数扩大m倍,另一个因数缩小相同的倍数,那么它们的积不变.
(四)如果一个因数扩大m倍,另一个因数扩大n倍,那么,它们的积扩大(m×n)倍.
(五)如果一个因数缩小m倍,另一个因数缩小n倍,那么,它们的积就缩小(m×n)倍.
(六)如果一个因数扩大m倍,另一个因数缩小n倍,那么,当m>n时它们的积扩大(m÷n)倍,当m<n时,它们的积就缩小(n÷m)倍.
商的变化规律
(一)如果被除数和除数同时扩大或缩小相同的倍数,那么,它们的商不变.
(二)如果被除数扩大(或缩小)m倍,除数不变,那么,它们的商就扩大(或缩小)m倍.
(三)如果除数扩大或缩小m倍,被除数不变,那么,它们的商反而缩小或扩大m倍.
(四)如果被除数扩大m倍,除数缩小n倍,那么,它们的商就扩大(m×n)倍.
(五)如果被除数缩小m倍,除数扩大n倍,那么,它们的商就缩小(m×n)倍.
(六)如果被除数扩大m倍,除数扩大n倍,当m>n时,它们的商就扩大(m÷n)倍,当m<n时,它们的商就缩小(n÷m)倍.
(七)如果被除数缩小m倍,除数缩小n倍,当m>n时,它们的商就缩小(m÷n)倍,当m<n时,它们的商就扩大(n÷m)倍.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
上一篇:递等式计算(能简便的要简便计算):6.01-1.9+4.99-2.10.25×32×12.50.65×64-65×0.5490÷(3.6-1.8)52+6.5+26×0.370.36÷[(6.1-4.6)×O.8].-数学
下一篇:计算下面各题,能简便计算的要用简便方法计算.60÷15+15×60206×(39÷13×4)125×54-46×125(730-80÷2)÷23400×[(270+80)÷7]99+99×99.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |