关于比例说法错误的是[]A.已知任意三项,就能求出第四项。B.已知任何两项的积就能求出另外两项的积。C.已知两个外项的积,就能知道两个内项的积。D.已知前两项的比值,就能知-六年级数学
题文
关于比例说法错误的是 |
[ ] |
A.已知任意三项,就能求出第四项。 B.已知任何两项的积就能求出另外两项的积。 C.已知两个外项的积,就能知道两个内项的积。 D.已知前两项的比值,就能知道后两项的比值。 |
答案
B |
据专家权威分析,试题“关于比例说法错误的是[]A.已知任意三项,就能求出第四项。B.已知..”主要考查你对 比例的意义,比例的基本性质,解比例,比例的应用题 等考点的理解。关于这些考点的“档案”如下:
比例的意义,比例的基本性质解比例,比例的应用题
考点名称:比例的意义,比例的基本性质
- 表示两个比相等的式子叫做比例。
比例的基本性质:
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积。
用字母表示为:如果 (a,b, c,d 都不等于零),那么ad=bc.
这是因为用bd去乘的两边,得?bd=?bd,所以ad=bc. 性质推论:
从比例的这个基本性质,可以推得:
如果两个数的积等于另外两个数的积,那么这四个数可以组成比例。
用式子表示就是:如果ad=bc,那么(b.d都不等于零)。
这是因为用bd 去除ad=bc两边,得 ,所以 。比例意义:
正比例的意义:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。
反比例的意义:
成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
反比例实质:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。
考点名称:解比例,比例的应用题
解比例:
求比例中的未知项,叫做解比例。
根据比例的基本性质(即交叉相乘),如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例是利用比例的基本性质:在比例中,两个外项的积等于两个内项的积。再转化成方程。
比例应用题:
是小学六年级奥数中的一个重要内容。它既是整数应用题的继续与深化,又是学习更多数学知识的重要基础,同时,这类题又有着自身的特点和解题的规律。在处理几个量的倍比关系时,比例应用题与分数百分数应用题间有很多相似之处,但利用比例处理问题要方便灵活得多。
要解决好此类问题,须注意灵活运用画线段示意图等手段,多角度、多侧面思考问题。在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法的同时,不断地开拓解题思路。- 用比例方法解应用题的一般步骤:
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |