用1、2、3、4、5、6、7、8、9这九个数字,能否组成一个最小的、能被11整除的九位数?如果能,请写出这个九位数,并写出思考过程;如果不能,请说明原因.-数学

首页 > 考试 > 数学 > 小学数学 > 整除和除尽/2019-03-01 / 加入收藏 / 阅读 [打印]

题文

用1、2、3、4、5、6、7、8、9这九个数字,能否组成一个最小的、能被11整除的九位数?如果能,请写出这个九位数,并写出思考过程;如果不能,请说明原因.
题型:填空题  难度:偏易

答案

由于能被11整除的整数,其奇位数上数字之和与偶位数上数字之和的差也是11的倍数,但这9个数字之和为45,那么奇位与偶位上的数字个数必定是:要么为4个,要么为5个.
假设奇位与偶位上的数字之和分别为a、b,则有:a+b=45,
可知a、b必定为一奇一偶,a、b二者中最小为1+2+3+4=10,那么a、b只有一种可能28、17,
要使组成的九位数最小,1、2、3、4、5应尽量排在前面,6、7、8、9尽量排在后面,因为这个数最小的排列方式(先不考虑被11整除)为123456789,其中奇数位和=25大于17,所以奇数位和=28,偶数位和=17,因为123456789中奇数位和比28小三,所以把后六位数每两位调换,变成124365879;
综上得:最小的九位数为124365879.

据专家权威分析,试题“用1、2、3、4、5、6、7、8、9这九个数字,能否组成一个最小的、能..”主要考查你对  整除和除尽  等考点的理解。关于这些考点的“档案”如下:

整除和除尽

考点名称:整除和除尽

  • 定义:
    1、整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除数a。 

    2、数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽。如果商是无限小数,就叫除不尽。

  • 整除和除尽的关系:
    整除是除尽的特殊形式,能整除的算式一定能除尽,但能除尽的算式不一定能整除。

    整除规则:
    第一条(1):任何数都能被1整除。  
    第二条(2):个位上是2、4、6、8、0的数都能被2整除。   
    第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。   
    第四条(4):最后两位能被4整除的数,这个数就能被4整除。   
    第五条(5):个位上是0或5的数都能被5整除。   
    第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。   
    第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。   
    第八条(8):最后三位能被8整除的数,这个数就能被8整除。   
    第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。   
    第十条(10): 若一个整数的末位是0,则这个数能被10整除