将自然数1、2、g,…依次写下去组成一个数:12g4567871711121g…,如果写到某个自然数时,所组成九数恰好第一次能被72整除,那么这个自然数是多o?-数学
题文
将自然数1、2、g,…依次写下去组成一个数:12g4567871711121g…,如果写到某个自然数时,所组成九数恰好第一次能被72整除,那么这个自然数是多o? |
答案
因为77=8×9,8和9互质,任意9个连续自然数所组成的着位数1定能被9整除, 则9、18、77、右5、45、…时,能被9整除. 因为9、18、77、右5、45、…本身又都是9的倍数, 所以写到8、17、75、右5、44、…时也都能被9整除. 因为578、718、575都不能被8整除,而5右5能被8整除, 所以这个自然数为右5. 答:这个自然数是右5. |
据专家权威分析,试题“将自然数1、2、g,…依次写下去组成一个数:12g4567871711121g…,如..”主要考查你对 整除和除尽 等考点的理解。关于这些考点的“档案”如下:
整除和除尽
考点名称:整除和除尽
- 定义:
1、整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除数a。
2、数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽。如果商是无限小数,就叫除不尽。 - 整除和除尽的关系:
整除是除尽的特殊形式,能整除的算式一定能除尽,但能除尽的算式不一定能整除。
整除规则:
第一条(1):任何数都能被1整除。
第二条(2):个位上是2、4、6、8、0的数都能被2整除。
第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。
第四条(4):最后两位能被4整除的数,这个数就能被4整除。
第五条(5):个位上是0或5的数都能被5整除。
第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。
第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。
第八条(8):最后三位能被8整除的数,这个数就能被8整除。
第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。
第十条(10): 若一个整数的末位是0,则这个数能被10整除
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |