观察以下的运算:若.abc是三位数,因为.abc=100a+10b+c=99a+9b+(a+b+c)所以,若a+b+c能被9整除,.abc能被9整除.这个结论可以推广到任意多位数.运用以上的结论,解答以下问-数学

首页 > 考试 > 数学 > 小学数学 > 整除和除尽/2019-03-01 / 加入收藏 / 阅读 [打印]

题文

观察以下的运算:
.
abc
是三位数,因为
.
abc
=100a+10b+c=99a+9b+(a+b+c)
所以,若a+b+c能被9整除,
.
abc
能被9整除.
这个结论可以推广到任意多位数.
运用以上的结论,解答以下问题:
(1)N是2011位数,每位数字都是2,求N被9除,得到的余数.
(2)N是n位数,每位数字都是7,n是被9除余3的数.求N被9除,得到的余数.
题型:解答题  难度:中档

答案

(1)2011×2=4022;
4022÷9=446…8,
所以N被9除,得到的余数是8;
(2)自然数N各个数位上数字之和为7n;由于n÷9余3,所以不妨设n=9k+3,
则7n=7(9k+3)=63k+21=(63k+18)+3=9(7k+2)+3;
那么N-3的各个数位上数字和为7n-3=9(7k+2)能被9整除,所以N-3能被9整除,所以N被9除的余数也是3.
答:(1)N被9除,得到的余数是9,(2)N被9除,得到的余数是3.

据专家权威分析,试题“观察以下的运算:若.abc是三位数,因为.abc=100a+10b+c=99a+9b+..”主要考查你对  整除和除尽  等考点的理解。关于这些考点的“档案”如下:

整除和除尽

考点名称:整除和除尽

  • 定义:
    1、整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除数a。 

    2、数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽。如果商是无限小数,就叫除不尽。

  • 整除和除尽的关系:
    整除是除尽的特殊形式,能整除的算式一定能除尽,但能除尽的算式不一定能整除。

    整除规则:
    第一条(1):任何数都能被1整除。  
    第二条(2):个位上是2、4、6、8、0的数都能被2整除。   
    第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。   
    第四条(4):最后两位能被4整除的数,这个数就能被4整除。   
    第五条(5):个位上是0或5的数都能被5整除。   
    第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。   
    第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。   
    第八条(8):最后三位能被8整除的数,这个数就能被8整除。   
    第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。   
    第十条(10): 若一个整数的末位是0,则这个数能被10整除