设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的-数学

首页 > 考试 > 数学 > 小学数学 > 整除和除尽/2019-03-01 / 加入收藏 / 阅读 [打印]

题文

设a与b是两个不相等的非零自然数.
(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?
(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?
题型:解答题  难度:中档

答案

(1)72=1×72=8×9=2×2×2×3×3,
所以:a和b可能是1、72或8、9或72、2、或72、3或72、4或72、6或72、8、或72、9或72、12或72、18或72、24或72、36或36、8或36、24、或24、18或24、9或18、8;
72+1=73,
72+2=74,
72+3=75,
72+4=76,
72+6=78,
72+8=80,
72+9=81,
72+12=84,
72+18=90,
72+24=96
72+36=108,
36+8=44,
36+24=60,
24+18=42,
24+9=33,
18+8=26,
9+8=17,
所以a与b之和可以有17种不同的值;
答:一共有17种不同的值.

(2)60=2×2×3×5,
a=60,b可取60的全部因子式共11个:1,2,3,4,5,6,10,12,15,20,30
a=30,b可取全部因子中所有4的倍数共4个:4,12,20,60
a=20,b可取全部因子中所有3的倍数共6个:3,6,12,15,30,60
a=15,b可取全部因子中所有4的倍数共4个:4,12,20,60
a=12,b可取全部因子中所有5的倍数共6个:5,10,15,20,30,60
a=10,b可取全部因子中所有12的倍数共2个:12,60
a=6,b可取全部因子中所有20的倍数共2个:20,60
a=5,b可取全部因子中所有12的倍数共2个:12,60
a=4,b可取全部因子中所有15的倍数共3个:15,30,60
a=3,b可取全部因子中所有20的倍数共2个:20,60
a=2,b可取全部因子中所有60的倍数共1个:60
a=1,b可取全部因子中所有60的倍数共1个:60
共计11+4+6+4+6+2+2+2+3+2+1+1=44对,
如果不考虑a,b的顺序也应有22种情况.
(1,60),(2,60),(3,20),(3,60),(4,15),(4,30),(4,60),(5,12),(5,60),(6,20),(6,60),
(10,12),(10,60),(12,15,),(12,20),(12,30),(12,60),
(15,20),(15,60),(20,30),(20,60),(30,60)
它们的差是:2,3,5,7,8,10,11,14,17,18,26,30,40,45,48,50,54,55,56,57,58,59.
答:共有22种不同的差.

据专家权威分析,试题“设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,..”主要考查你对  整除和除尽  等考点的理解。关于这些考点的“档案”如下:

整除和除尽

考点名称:整除和除尽

  • 定义:
    1、整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除数a。 

    2、数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽。如果商是无限小数,就叫除不尽。

  • 整除和除尽的关系:
    整除是除尽的特殊形式,能整除的算式一定能除尽,但能除尽的算式不一定能整除。

    整除规则:
    第一条(1):任何数都能被1整除。  
    第二条(2):个位上是2、4、6、8、0的数都能被2整除。   
    第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。   
    第四条(4):最后两位能被4整除的数,这个数就能被4整除。   
    第五条(5):个位上是0或5的数都能被5整除。   
    第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。   
    第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。   
    第八条(8):最后三位能被8整除的数,这个数就能被8整除。   
    第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。   
    第十条(10): 若一个整数的末位是0,则这个数能被10整除