一个正方形池塘边长是512千米,它的周长是多少千米?-数学
题文
一个正方形池塘边长是
|
题文
一个正方形池塘边长是
|
题型:解答题 难度:中档
答案
答:它的周长是
|
据专家权威分析,试题“一个正方形池塘边长是512千米,它的周长是多少千米?-数学-”主要考查你对 正方形的周长,两直线平行、垂直的判定与性质,直线的方程 等考点的理解。关于这些考点的“档案”如下:
正方形的周长两直线平行、垂直的判定与性质直线的方程
考点名称:正方形的周长
方法点拨:
围成一个图形的所有边长的总和叫做这个图形的周长。
1、例:用铁丝围成一个正方形,使每边长2厘米。它的周长是多少厘米?
想:求正方形的周长就是求它的四条边长的总和。
方法1: 2+2+2+2=8(厘米)
方法2: 2×4=8(厘米)
哪种方法简便?
方法2
2、正方形周长公式:
正方形周长=边长×4
即:C=a×4
考点名称:两直线平行、垂直的判定与性质
两直线平行、垂直的判定的文字表述:
平行判断的文字表述:如果两条不重合的直线(存在斜率)平行,则它们的斜率相等;反之,如果两条不重合直线的斜率相等,则它们平行;
垂直判断的文字表述:如果两条直线都有斜率,且它们互相垂直,那么它们斜率之积为-1;反之,如果两条直线的斜率之积为-1,那么它们互相垂直
两直线平行、垂直的判定的符号表示:
1、若,
(1);
(2)。
2、若,,且A1、A2、B1、B2都不为零,
(1);
(2)。
两直线平行的判断的理解:
成立的前提条件是两条直线的斜率存在,分别为
当两条直线不重合且斜率均不存在时,
两直线垂直的判断的理解:
成立的前提条件是斜率都存在且不等于零.
②两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直,这样,两条直线垂直的判定就可叙述为:一般地,,或一条直线的斜率不存在,同时另一条直线的斜率等于零。
求与已知直线垂直的直线方程的方法:
(1)垂直的直线方程可设为垂直的直线方程可设为
(2)利用互相垂直的直线之间的关系求出斜率,再用点斜式写出直线方程。
求与已知直线平行的直线方程的方法:
(1)一般地,直线决定直线的斜率,因此,与直线
平行的直线方程可设为,这是常常采用的解题技巧。
重合。
(2)一般地,经过点
(3)利用平行直线斜率相等,求出斜率,再用点斜式求出直线方程.
考点名称:直线的方程
直线方程的定义:
以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。
基本的思想和方法:
求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后釆用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。
直线方程的几种形式:
1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14)
[教师分享] 给远方姐姐的一封信 (2018-11-07)
[教师分享] 伸缩门 (2018-11-07)
[教师分享] 回家乡 (2018-11-07)
[教师分享] 是风味也是人间 (2018-11-07)
[教师分享] 一句格言的启示 (2018-11-07)
[教师分享] 无规矩不成方圆 (2018-11-07)
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07)
[教师分享] 贪玩的小狗 (2018-11-07)
[教师分享] 未命名文章 (2018-11-07)