甲、乙、丙三人同时从A地出发去距A地100千米的B地,甲与丙以25千米/时的速度乘车行进,而乙却以5千米/时的速度步行,过了一段时间后,丙下车改以5千米/时的速度步行,而甲驾-数学

题文

甲、乙、丙三人同时从A地出发去距A地100千米的B地,甲与丙以25千米/时的速度乘车行进,而乙却以5千米/时的速度步行,过了一段时间后,丙下车改以5千米/时的速度步行,而甲驾车以原速折回,将乙载上而前往B地,这样甲、乙、丙三人同时到达B地,此旅程共用时数为多少小时?
题型:解答题  难度:中档

答案

由题意可知,乙、丙步行时间、距离应相同,如图:
设甲丙至C点,丙改为步行,此时乙走到D.甲返回时与乙在E相遇.
因为25÷5=5,可知EC=5DE,而AC+EC=5AE,AC=AE+EC,所以EC=2AE.
又AE=CB,即EC为全程一半.所以车共走了两个全程,即100×2=200千米,
所需时间为:200÷25=8(小时).
答:此旅程共用时数为8小时.

据专家权威分析,试题“甲、乙、丙三人同时从A地出发去距A地100千米的B地,甲与丙以25千..”主要考查你对  整数,小数,分数,百分数和比例的复合应用题  等考点的理解。关于这些考点的“档案”如下:

整数,小数,分数,百分数和比例的复合应用题

考点名称:整数,小数,分数,百分数和比例的复合应用题

  • 含有小数、分数、百分数、比例中任意两种或两种以上的数的运算应用题。
    复合应用题:
    是由两个或两个以上相互联系的简单应用题组合而成的。
    在这种应用题中有两个或两个以上相互关联的数量关系,而且所求问题需要的条件没有直接给出。
    这就要根据相互关联的数量关系找出已知数量和未知数量的联系,先解答一个或几个中间问题,也就是把它先分解成几个简单应用题,然后再根据它们的联系依次列式并求解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐