有三堆弹子,共46颗.第一次从第一堆里拿出与第二堆颗数相同的弹子并入第二堆里;第二次再从第二堆里拿出与第三堆颗数相同的弹子并入第三堆里;第三次再从第三堆里拿出与第一-数学

题文

有三堆弹子,共46颗.第一次从第一堆里拿出与第二堆颗数相同的弹子并入第二堆里;第二次再从第二堆里拿出与第三堆颗数相同的弹子并入第三堆里;第三次再从第三堆里拿出与第一堆剩下的颗数相同的弹子并入第一堆里.经过这样的变动后,三堆弹子的颗数恰好完全相同.原来每堆弹子各有多少颗?
题型:解答题  难度:中档

答案

三次交换只改变了三堆各自的数目,而总数不变最后结果三堆数目相同,因此总数应该是3的倍数.已知总数为46颗,不能被3整除.所以本题无解.
答:本题无解.

据专家权威分析,试题“有三堆弹子,共46颗.第一次从第一堆里拿出与第二堆颗数相同的弹子..”主要考查你对  整数,小数,分数,百分数和比例的复合应用题  等考点的理解。关于这些考点的“档案”如下:

整数,小数,分数,百分数和比例的复合应用题

考点名称:整数,小数,分数,百分数和比例的复合应用题

  • 含有小数、分数、百分数、比例中任意两种或两种以上的数的运算应用题。
    复合应用题:
    是由两个或两个以上相互联系的简单应用题组合而成的。
    在这种应用题中有两个或两个以上相互关联的数量关系,而且所求问题需要的条件没有直接给出。
    这就要根据相互关联的数量关系找出已知数量和未知数量的联系,先解答一个或几个中间问题,也就是把它先分解成几个简单应用题,然后再根据它们的联系依次列式并求解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐