一次考试,参加的学生中有17得优,13得良,12得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有______人.-数学

题文

一次考试,参加的学生中有
1
7
得优,
1
3
得良,
1
2
得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有______人.
题型:填空题  难度:中档

答案

因为7、3和2的最小公倍数是42,
所以参加考试的学生人数是42,
得差的学生人数:
42×(1-
1
7
-
1
3
-
1
2
),
=42×
1
42

=1(人);
答:得差的学生有1人.

据专家权威分析,试题“一次考试,参加的学生中有17得优,13得良,12得中,其余的得差,..”主要考查你对  最大公因数(最大公约数),最小公倍数  等考点的理解。关于这些考点的“档案”如下:

最大公因数(最大公约数),最小公倍数

考点名称:最大公因数(最大公约数),最小公倍数

  • 最大公因数(最大公约数):
    任何两个自然数都有公因数1,(除零以外)公因数中(几个)最大的称为最大公因数;
    最小公倍数:
    在两个或两个以上的自然数中,如果他们有相同的倍数,这些倍数中,最小的称为这些整数的最大公倍数。

  • 最大公约数的求法:
    (1)用分解质因数的方法,把公有的质因数相乘。
    (2)用短除法的形式求两个数的最大公约数。
    (3)特殊情况:如果两个数互质,它们的最大公约数是1。
    如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。

    最小公倍数的方法:
    (1)用分解质因数的方法,把这两个数公有的质因数和各自独有的质因数相乘。
    (2)用短除法的形式求。
    (3)特殊情况:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
    如果两个数中较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐