证明:32不可能写成n个连续自然数的和.-数学

题文

证明:32不可能写成n个连续自然数的和.
题型:解答题  难度:中档

答案

连续N个自然数的和为 四=n+(n+1)+(n+2)…+(n+m)=(2n+m)(m+1)/2 若m为奇数,则2n+m为奇数若m为偶数,则m+1为奇数则N个自然数的和必为奇数*偶数或奇数*奇数 32=2x无论怎么分除了1和32之外分不出这样的奇数*偶数,1和32非连续偶数,所以32不可能写成n个连续自然数的和

据专家权威分析,试题“证明:32不可能写成n个连续自然数的和.-数学-”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数