对于一个自然数n,如果能找到自然数a和b,使n=a+b+ab,则称n为一个“好”数,例如3=1+1+1×1,则3是一个“好”数,在1~~20这20个自然数中,“好”数有______个.-数学

题文

对于一个自然数n,如果能找到自然数a和b,使n=a+b+ab,则称n为一个“好”数,例如3=1+1+1×1,则3是一个“好”数,在1~~20这20个自然数中,“好”数有______个.
题型:填空题  难度:中档

答案

n+1=a+b+ab+1=(a+1)(b+1)为合数,所求的n即为2~~~21之间的合数少1的数.2~~21之间的合数有:4、6、8、9、10、12、14、15、16、18、20、21共12个,
故所求的n有12个.为3、5、7、8、9、10、11、13、14、15、17、19、20.
1=0+1+0×1,所以1也是好数,
故答案为:13.

据专家权威分析,试题“对于一个自然数n,如果能找到自然数a和b,使n=a+b+ab,则称n为一..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数