下面四个命题中,正确的命题是()A.两个不同的整数之间必定有一个正数B.两个不同的整数之间必定有一个整数C.两个不同的整数之间必定有一个有理数D.两个不同的整数之间必定有一-数学

题文

下面四个命题中,正确的命题是(  )
A.两个不同的整数之间必定有一个正数
B.两个不同的整数之间必定有一个整数
C.两个不同的整数之间必定有一个有理数
D.两个不同的整数之间必定有一个负数
题型:单选题  难度:偏易

答案

A、-1和-2之间就没有正数,故A错误;
B、-1和-2之间也没有整数,故B错误;
C、正确.
D、1和2之间就没有负数,故D错误;
故选C.

据专家权威分析,试题“下面四个命题中,正确的命题是()A.两个不同的整数之间必定有一个..”主要考查你对  有理数定义及分类,数轴  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类数轴

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
    在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。