求这样的质数,当它加上10和14时,仍为质数.-数学

题文

求这样的质数,当它加上10和14时,仍为质数.
题型:解答题  难度:中档

答案

因为2+10=12,2+14=16,所以质数2不适合;
因为3+10=13,3+14=17,所以质数3适合;
因为5+10=15,5+14=19,所以质数5不合适;
因为7+10=17,7+14=21,所以质数7不适合;
因为11+10=21,11+14=25,所以质数11不适合;

把正整数按模3同余分类.即:3k-1,3k+1(k为正整数).
因为(3k-1)+10=3k+9=3(k+3)是合数,(3k+1)+14=3k+15=3(k+5)是合数,
所以3k-1和3k+1这两类整数中的质数加上10和14后不能都是质数,
因此,在3k-1和3k+1两类整数中的质数加上10和14后当然不能都是质数.
对于3k这类整数,只有在k=1时,3k才是质数,其余均为合数.
所以所求的质数只有3.
故答案为:3.

据专家权威分析,试题“求这样的质数,当它加上10和14时,仍为质数.-数学-”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数