(9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.123456789101112131415161718192021222324252627282930313233343536…………………………(1)表-七年级数学
题文
(9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ………………………… (1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数; (2)用含n的代数式表示:第n行的第一个数是______________,最后一个数是 ________________,第n行共有_______________个数; (3)求第50行各数之和. |
答案
(1)64,8,15;-------------------3分 (2),,;-------------------------6分 (3).-------------------9分 |
分析: (1)先从给的数中得出每行最后一个数是该行数的平方,即可求出第8行的最后一个数,再根据每行数的个数为1,3,5,…的奇数列,即可求出第8行共有的个数; (2)根据第n行最后一数为n2,得出第一个数为n2-2n+2,根据每行数的个数为1,3,5,…的奇数列,即可得出答案; (3)通过(2)得出的第n行的第一个数和最后一个数以及第n行共有的个数,列出算式,进行计算即可。 解答: (1)从给的数中可得,每行最后一个数是该行数的平方, 则第8行的最后一个数是82=64,每行数的个数为1,3,5,…的奇数列, 第8行共有8×2-1=15个数; 故答案为:64,8,15; (2)由(1)知第n行的最后一数为n2, 则第一个数为:(n-1)2+1=n2-2n+2, 第n行共有2n-1个数; 故答案为:(n-1)2+1,n2,2n-1; (3)因为第n行的第一个数是(n-1)2+1,最后一个数是n2,共有(2n-1)个数, 所以第n行各数之和是[(n-1)2+1+n2]/2×(2n-1), 则第50行各数之和是[(50-1)2+1+502]/2×(2×50-1)=242649。 点评:本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是本题的关键。 |
据专家权威分析,试题“(9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题..”主要考查你对 有理数定义及分类,正数与负数,数轴,相反数 等考点的理解。关于这些考点的“档案”如下:
有理数定义及分类正数与负数数轴相反数
考点名称:有理数定义及分类
- 有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。 - 有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数
考点名称:正数与负数
正数:
就是大于0的(实数)
负数:
就是小于0的(实数)
0既不是正数也不是负数。非负数:正数与零的统称。
非正数:负数与零的统称。正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。
考点名称:数轴
- 数轴定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。 - 用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。 - 数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。 数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。
考点名称:相反数
相反数的定义:
像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。相反数的特性:
1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |