如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数之和都相等,则第2013个格子中的数为.…-七年级数学
题文
如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数之和都相等,则第2013个格子中的数为 .
|
答案
-1 |
试题分析:依题意,要使得任意四个相邻格子中所填的整数之和都相等,那么-1+3++=+++3,所以=-1,那么可以使=4,=-4,形成每四个一组,相邻四个数相加等于2,那么2013÷4=503…… 1,那么第2013个格子就是-1. 点评:根据题意找出符合条件的数值,观察所有数,找出其中的规律,再判断第n个数是多少。 |
据专家权威分析,试题“如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四..”主要考查你对 有理数定义及分类,正数与负数,数轴,相反数 等考点的理解。关于这些考点的“档案”如下:
有理数定义及分类正数与负数数轴相反数
考点名称:有理数定义及分类
- 有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。 - 有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数
考点名称:正数与负数
正数:
就是大于0的(实数)
负数:
就是小于0的(实数)
0既不是正数也不是负数。非负数:正数与零的统称。
非正数:负数与零的统称。正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。
考点名称:数轴
- 数轴定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。 - 用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。 - 数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |