下列各式运算中,正确的是[]A.(a+b)2=a2+b2B.C.a3·a4=a12D.-九年级数学
题文
下列各式运算中,正确的是 |
[ ] |
A.(a+b)2=a2+b2 B. C.a3·a4=a12 D. |
答案
B |
据专家权威分析,试题“下列各式运算中,正确的是[]A.(a+b)2=a2+b2B.C.a3·a4=a12D.-..”主要考查你对 算术平方根,整式的乘法,完全平方公式,分式的乘除 等考点的理解。关于这些考点的“档案”如下:
算术平方根整式的乘法完全平方公式分式的乘除
考点名称:算术平方根
- 概念:
若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
规定:0的算术平方根是0。
表示:a的算术平方根记为,读作“根号a”。
注:只有非负数有算术平方根,而且只有一个算术平方根。 - 平方根和算术平方根的区别与联系:
区别:
(1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
(2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
(3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
联系:
(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
(2)存在条件相同:只有非负数才有平方根和算术平方根。
(3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
注:
(1)平方和开平方的关系是互为逆运算;
(2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
(3)开方的方式是根号形式。 - 电脑根号的打法:
比较通用:
左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
运用Word的域命令在Word中根号:
首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
1.平方根
一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
算术平方根是定义在平方根基础上,因此负数没有算术平方根。
3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。
考点名称:整式的乘法
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。- 整式乘法运算:
单项式乘以单项式法则:
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
④.单项式乘法法则对于三个以上的单项式相乘同样适用.
⑤.单项式乘以单项式,结果仍是一个单项式.
单项式乘以多项式的运算法则:
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
考点名称:完全平方公式
- 完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a2+2ab+b2,
(a-b)2=a2-2ab+b2。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 结构特征:
1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
2.左边两项符号相同时,右边各项全用“+”号连接;
左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.
记忆口诀:首平方,尾平方,2倍首尾。使用误解:
①漏下了一次项;
②混淆公式;
③运算结果中符号错误;
④变式应用难于掌握。注意事项:
1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。完全平方公式的基本变形:
(一)、变符号
例:运用完全平方公式计算:
(1)(-4x+3y)2
(2)(-a-b)2
分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
解答:
(1)16x2-24xy+9y2
(2)a2+2ab+b2(二)、变项数:
例:计算:(3a+2b+c)2
分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
解答:9a2+12ab+6ac+4b2+4bc+c2(三)、变结构
例:运用公式计算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)2
(2) (a+b)(-a-b)=-(a+b)2
(3) (a-b)(b-a)=-(a-b)2
考点名称:分式的乘除
- 分式的乘除法则:
1、分式的乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为分母。
用字母表示为:
2、分式的除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
用式子表示为:(b,c,d均不为零)
3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
用式子表示为:(n为正整数),其中b≠0,a,b可以代表数,也可以代表代数式。 分式乘除的解题步骤:
分式乘法:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算分子与分子的积;
(3)计算分母与分母的积;
(4)把积中的分子,分母进行约分,化成最简分式或整式。
在解题时,这些步骤是连贯的。分式除法
要注意两个变化:
一是运算符号的变化,由原来的除法运算变成乘法运算;
二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
同学们也可以这样来理解这条法则:
两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。
基本步骤:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算被除式的分子与除式的分母的积,作为商的分子;
(3)计算被除式的分母与除式的分子的积,,作为商的分母;
(4)把商中的分子,分母进行约分,化成最简分式或整式。
此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |