下列说法错误的是()A.一个数的平方与这个数互为相反数的是0和-1B.一个数的立方等于这个数的倒数的是1和-1C.一个数的倒数小于这个数那么这个数大于1D.一个数的算术平方根等于-数学

首页 > 考试 > 数学 > 初中数学 > 算术平方根/2019-04-21 / 加入收藏 / 阅读 [打印]

题文

下列说法错误的是(  )
A.一个数的平方与这个数互为相反数的是0和-1
B.一个数的立方等于这个数的倒数的是1和-1
C.一个数的倒数小于这个数那么这个数大于1
D.一个数的算术平方根等于它本身的数是0和1
题型:单选题  难度:中档

答案

A、∵02=0,(-1)2=1,0和0互为相反数,-1和1互为相反数,正确,故本选项错误;
B、∵13=1,(-1)3=-1,1的倒数是1,-1的倒数是-1,正确,故本选项错误;
C、假如这个数是-
1
2
,-
1
2
的倒数是-2,小于-
1
2
,但是-
1
2
不大于1,错误,故本选项正确;
D、

0
=0,

1
=1,正确,故本选项错误.
故选C.

据专家权威分析,试题“下列说法错误的是()A.一个数的平方与这个数互为相反数的是0和-1B..”主要考查你对  算术平方根,倒数,有理数的乘方  等考点的理解。关于这些考点的“档案”如下:

算术平方根倒数有理数的乘方

考点名称:算术平方根

  • 概念:
    若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
    规定:0的算术平方根是0。
    表示:a的算术平方根记为,读作“根号a”。
    注:只有非负数有算术平方根,而且只有一个算术平方根。

  • 平方根和算术平方根的区别与联系:
    区别:
    (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
    (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
    (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
    联系:
    (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
    (2)存在条件相同:只有非负数才有平方根和算术平方根。
    (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
    注:
    (1)平方和开平方的关系是互为逆运算;
    (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
    (3)开方的方式是根号形式。

  •  

  • 电脑根号的打法:
    比较通用:
    左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
    运用Word的域命令在Word中根号:
    首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
    1.平方根
    一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
    2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
    算术平方根是定义在平方根基础上,因此负数没有算术平方根。
    3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图: