下列计算正确的是[]A.B.C.D.-九年级数学
题文
下列计算正确的是 |
[ ] |
A. B. C. D. |
答案
D |
据专家权威分析,试题“下列计算正确的是[]A.B.C.D.-九年级数学-”主要考查你对 二次根式的加减乘除混合运算,二次根式的化简,二次根式的乘除,算术平方根 等考点的理解。关于这些考点的“档案”如下:
二次根式的加减乘除混合运算,二次根式的化简二次根式的乘除算术平方根
考点名称:二次根式的加减乘除混合运算,二次根式的化简
- 二次根式的加减乘除混合运算:
顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
③运算结果是根式的,一般应表示为最简二次根式。
二次根式的化简:
先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。 二次根式混合运算掌握:
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。二次根式化简方法:
二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
分母有理化:
分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
(1)直接利用二次根式的运算法则:
例:
(2)利用平方差公式:
例:
(3)利用因式分解:
例:(此题可运用待定系数法便于分子的分解)
换元法(整体代入法):
换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
例:在根式中,令,即可得到
原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8提公因式法:
例:计算
巧构常值代入法:
例:已知x2-3x+1=0,求的值。
分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
解:显然x≠0,x2-3x+1=0化为x+=3。
原式==2.
考点名称:二次根式的乘除
- 二次根式的乘除法则:
1、二次根式的乘法原则:,即两个二次根式相乘,根指数不变,相乘的结果是一个二次根式或有理式。
2、二次根式的除法原则:,即二次根式相除,就是把被被开方数相除,根指数不变。
有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
考点名称:算术平方根
- 概念:
若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
规定:0的算术平方根是0。
表示:a的算术平方根记为,读作“根号a”。
注:只有非负数有算术平方根,而且只有一个算术平方根。 - 平方根和算术平方根的区别与联系:
区别:
(1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
(2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
(3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
联系:
(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
(2)存在条件相同:只有非负数才有平方根和算术平方根。
(3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
注:
(1)平方和开平方的关系是互为逆运算;
(2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
(3)开方的方式是根号形式。 - 电脑根号的打法:
比较通用:
左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
运用Word的域命令在Word中根号:
首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
1.平方根
一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
算术平方根是定义在平方根基础上,因此负数没有算术平方根。
3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |