计算:(1)=();(2)=()。-八年级数学

首页 > 考试 > 数学 > 初中数学 > 实数的运算/2019-04-22 / 加入收藏 / 阅读 [打印]

题文

计算:(1)=(    );
(2)=(    )。
题型:填空题  难度:中档

答案

(1)
(2)

据专家权威分析,试题“计算:(1)=();(2)=()。-八年级数学-”主要考查你对  实数的运算,分式的乘除  等考点的理解。关于这些考点的“档案”如下:

实数的运算分式的乘除

考点名称:实数的运算

  • 实数的运算:
    实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
    实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

    四则运算封闭性:
    实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

  • 实数的运算法则:
    1、加法法则:
    (1)同号两数相加,取相同的符号,并把它们的绝对值相加;
    (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
    可使用
    ①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a;
    ②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。

    2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)

    3、乘法法则:
    (1)两数相乘,同号取正,异号取负,并把绝对值相乘。
    (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
    (3)乘法可使用
    ①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba;
    ②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc);
    ③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。

    4、除法法则:
    (1)两数相除,同号得正,异号得负,并把绝对值相除。
    (2)除以一个数等于乘以这个数的倒数。
    (3)0除以任何数都等于0,0不能做被除数。

    5、乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。

    实数的运算顺序:
    乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

考点名称:分式的乘除

  • 分式的乘除法则:
    1、分式的乘法法则:
    分式乘分式,用分子的积作为积的分子,分母的积作为分母。
    用字母表示为:
    2、分式的除法法则:
    分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
    用式子表示为:(b,c,d均不为零)
    3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
    用式子表示为:(n为正整数),其中b≠0,a,b可以代表数,也可以代表代数式。

  •  

  • 分式乘除的解题步骤:
    分式乘法:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算分子与分子的积;
    (3)计算分母与分母的积;
    (4)把积中的分子,分母进行约分,化成最简分式或整式。
    在解题时,这些步骤是连贯的。

    分式除法
    要注意两个变化:
    一是运算符号的变化,由原来的除法运算变成乘法运算;
    二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
    同学们也可以这样来理解这条法则:
    两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
    这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。

    基本步骤:
    (1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
    如果有奇数个负号,积为负;
    (2)计算被除式的分子与除式的分母的积,作为商的分子;
    (3)计算被除式的分母与除式的分子的积,,作为商的分母;
    (4)把商中的分子,分母进行约分,化成最简分式或整式。
    此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐