已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a<2B.a>2C.a<-2D.a<2且a≠1-数学

题文

已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是(  )
A.a<2B.a>2C.a<-2D.a<2且a≠1
题型:单选题  难度:偏易

答案

∵方程有两个不相等的实数根,
∴△=(-2)2-4×(a-1)=4-4a+4=8-4a>0,
解得a<2,
又∵方程(a-1)x2-2x+1=0为一元二次方程,
∴a-1≠0,
即a≠1,
故选D.

据专家权威分析,试题“已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则..”主要考查你对  一元二次方程的定义,一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的定义一元二次方程根的判别式

考点名称:一元二次方程的定义

  • 定义
    只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

    一元二次方程的一般形式:
    它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  • 方程特点;
    (1)该方程为整式方程。
    (2)该方程有且只含有一个未知数。
    (3)该方程中未知数的最高次数是2。

    判断方法:

    要判断一个方程是否为一元二次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为(a≠0)的形式,则这个方程就为一元二次方程。

  • 点拨:
    ①“a≠0”是一元二次方程的一般形式的重要组成部分,当a=0,b≠0时,她就成为一元一次方程了。反之,如果明确了是一元二次方程,就隐含了a≠0这个条件;
    ②任何一个一元二次方程, 经过整理都能化成一般形式,在判断一个方程是不是一元二次方程时,首先化成一般形式,再判断;
    ③二次项系数、一次项系数和常数项都是在一般形式下定义的,所以咋确定一元二次方程各项的系数时,应首先将方程化为一般形式;
    ④项的系数包括它前面的符号。如:x2+5x+3=0的一次项系数是5,而不是5x;3x2+4x-1=0的常数项是-1而不是1;
    ⑤若一元二次方程化为一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项。

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。