如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=2︰5,直线CD垂直于直线AB于点P,交x轴于点D。(1)求出点A、点-九年级数学

题文

如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=2︰5,直线CD垂直于直线AB于点P,交x轴于点D。
(1)求出点A、点B的坐标。
(2)请求出直线CD的解析式。
 (3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

题型:解答题  难度:偏难

答案

解:∵x2-6x+8=0,
∴x1=4,x2=2,
∵OA、OB为方程的两个根,且OA<OB,
∴OA=2,OB=4
∴ A(0,2),B(-4,0);
(2)∵ OA∶AC=2∶5,
∴AC=5
∴OC=OA+AC=2+5=7,
∴ C(0,7),
∵∠BAO=∠CAP,∠CPB=∠BOA=90°,
∴∠PBD=∠OCD,
∵∠ BOA=∠COD=90°,
∴△BOA∽△COD,

∴ OD=
∴D(,0),
设直线CD的解析式为y=kx+b,
把x=0,y=7;x=,y=0分别代入得:


∴yCD=-2x+7;
(3)存在,P1(-5.5,3),P2(9.5,3),P3(-2.5,-3)。

据专家权威分析,试题“如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程..”主要考查你对  一元二次方程的解法,求一次函数的解析式及一次函数的应用,平行四边形的判定,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的解法求一次函数的解析式及一次函数的应用平行四边形的判定相似三角形的性质

考点名称:一元二次方程的解法

  • 一元二次方程的解:
    能够使方程左右两边相等的未知数的值叫做方程的解。
    解一元二次方程方程:
    求一元二次方程解的过程叫做解一元二次方程方程。

  • 韦达定理:
    一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
    一般式:ax2+bx+c=0的两个根x1和x2关系:
    x1+x2= -b/a
    x1·x2=c/a

  • 一元二次方程的解法:
    1、直接开平方法
    利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
    直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
    用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

    2、配方法
    配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
    配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

    3、公式法
    公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
    一元二次方程 的求根公式:
    求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

    4、因式分解法
    因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:平行四边形的判定

  • 平行四边形的判定:
    (1)定义:两组对边分别平行的四边形是平行四边形;
    (2)定理1:两组对角分别相等的四边形是平行四边形;
    (3)定理2:两组对边分别相等的四边形是平行四边形;
    (4)定理3:对角线互相平分的四边形是平行四边形
    (5)定理4:一组对边平行且相等的四边形是平行四边形。
    平行四边形的面积:S=底×高。

考点名称:相似三角形的性质

  • 相似三角形性质定理:
    (1)相似三角形的对应角相等。
    (2)相似三角形的对应边成比例。
    (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
    (4)相似三角形的周长比等于相似比。
    (5)相似三角形的面积比等于相似比的平方。
    (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
    (7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
    (8)c/d=a/b 等同于ad=bc.
    (9)不必是在同一平面内的三角形里
    ①相似三角形对应角相等,对应边成比例.
    ②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
    ③相似三角形周长的比等于相似比

    定理推论:
    推论一:顶角或底角相等的两个等腰三角形相似。
    推论二:腰和底对应成比例的两个等腰三角形相似。
    推论三:有一个锐角相等的两个直角三角形相似。
    推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
    推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
    推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐