以关于x的整系数方程x2+(t-4)x+t=0的最大整数根为直径作⊙O,M为⊙O外的一点,过M作⊙O的切线MA和割线MBC,A为切点,若MA,MB,MC都是整数,且MB,MC都不是合数,求MA,MB,MC的-数学
题文
以关于x的整系数方程x2+(t-4)x+t=0的最大整数根为直径作⊙O,M为⊙O外的一点,过M作⊙O的切线MA和割线MBC,A为切点,若MA,MB,MC都是整数,且MB,MC都不是合数,求MA,MB,MC的长度. |
答案
设方程两根为x1、x2则
又MA=x,MB=y,BC=z,则x﹑y﹑z都是正整数. 由切割线定知 MA2=MB?MC=MB(MB+BC), 即x2=y2+yz?(x+y)(x-y)=yz.③ 消去①和②中的t,得 x1x2=4-x1-x2. 整理分解,得 (x1+1)(x2+1)=5. 因为⊙O的直径是方程的最大整数根,不难求得最大整根t=4.进而,z=BC≤4. 又正整数z不是合数,故z=3,2,1. 当z=3时,(x+y)(x-y)=3y,有
可得适合题意的解为x=2,y=1. 当z=1和z=2时,没有适合题意的解, 所以,MA=x=2,MB=y=1,MC=y+z=4. |
据专家权威分析,试题“以关于x的整系数方程x2+(t-4)x+t=0的最大整数根为直径作⊙O,M为⊙..”主要考查你对 一元二次方程的解法,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离) 等考点的理解。关于这些考点的“档案”如下:
一元二次方程的解法直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
考点名称:一元二次方程的解法
- 一元二次方程的解:
能够使方程左右两边相等的未知数的值叫做方程的解。
解一元二次方程方程:
求一元二次方程解的过程叫做解一元二次方程方程。 韦达定理:
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
一般式:ax2+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a- 一元二次方程的解法:
1、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。
2、配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有 。
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程 的求根公式:
求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
直线与圆的位置关系:
直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)- 直线与圆的三种位置关系的判定与性质:
(1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
直线l与⊙O相交d<r;
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
(2)公共点法:通过确定直线与圆的公共点个数来判定。
直线l与⊙O相交d<r2个公共点;
直线l与⊙O相切d=r有唯一公共点;
直线l与⊙O相离d>r无公共点 。
圆的切线的判定和性质
(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线垂直于经过切点的半径。
切线长:
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 - 直线与圆的位置关系判定方法:
平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
当x1<x=-C/A<x2时,直线与圆相交。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |