已知两个圆的半径分别为一元二次方程x2-6x+5=0的两根,此两圆的圆心距为6,则这两个圆的位置关系是______.-数学

题文

已知两个圆的半径分别为一元二次方程x2-6x+5=0的两根,此两圆的圆心距为6,则这两个圆的位置关系是______.
题型:填空题  难度:偏易

答案

∵两个圆的半径分别为一元二次方程x2-6x+5=0的两根,
∴r+R=-
b
a
=6,
∵两圆的圆心距为6,
∴r+R=d,
∴这两个圆的位置关系是:外切.
故答案为:外切.

据专家权威分析,试题“已知两个圆的半径分别为一元二次方程x2-6x+5=0的两根,此两圆的圆..”主要考查你对  一元二次方程的解法,圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的解法圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

考点名称:一元二次方程的解法

  • 一元二次方程的解:
    能够使方程左右两边相等的未知数的值叫做方程的解。
    解一元二次方程方程:
    求一元二次方程解的过程叫做解一元二次方程方程。

  • 韦达定理:
    一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
    一般式:ax2+bx+c=0的两个根x1和x2关系:
    x1+x2= -b/a
    x1·x2=c/a

  • 一元二次方程的解法:
    1、直接开平方法
    利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
    直接开平方法适用于解形如的一元二次方程,根据平方根的定义可知,x+a 是b的平方根,当时,;当b<0时,方程没有实数根。
    用直接开平方法求一元二次方程的根,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数,零的平方根是零,负数没有平方根。

    2、配方法
    配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
    配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有

    3、公式法
    公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
    一元二次方程 的求根公式:
    求根公式是专门用来解一元二次方程的,故首先要求a≠0;有因为开平方运算时,被开方数必须是非负数,所以第二个条件是b2-4ac≥0。即求根公式使用的前提条件是a≠0且b2-4ac≥0。

    4、因式分解法
    因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点名称:圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

  • 圆和圆的位置关系:
    如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
    如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
    如果两个圆有两个公共点,那么就说这两个圆相交。

    圆心距:两圆圆心的距离叫做两圆的圆心距。

  • 圆和圆位置关系的性质与判定:
    设两圆的半径分别为R和r,圆心距为d,那么
    两圆外离d>R+r(没有交点)
    两圆外切d=R+r (有一个交点,叫切点)
    两圆相交R-r<d<R+r(R≥r)(有两个交点)
    两圆内切d=R-r(R>r) (有一个交点,叫切点)
    两圆内含d<R-r(R>r)(没有交点)

    两圆相切的性质:
    (1)连心线:两圆圆心的连线。
    (2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。